Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(4): e2218373120, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36656864

ABSTRACT

The HER2+ subtype of human breast cancer is associated with the malignant transformation of luminal ductal cells of the mammary epithelium. The sequence analysis of tumor DNA identifies loss of function mutations and deletions of the MAP2K4 and MAP2K7 genes that encode direct activators of the JUN NH2-terminal kinase (JNK). We report that in vitro studies of human mammary epithelial cells with CRISPR-induced mutations in the MAPK and MAP2K components of the JNK pathway caused no change in growth in 2D culture, but these mutations promoted epithelial cell proliferation in 3D culture. Analysis of gene expression signatures in 3D culture demonstrated similar changes caused by HER2 activation and JNK pathway loss. The mechanism of signal transduction cross-talk may be mediated, in part, by JNK-suppressed expression of integrin α6ß4 that binds HER2 and amplifies HER2 signaling. These data suggest that HER2 activation and JNK pathway loss may synergize to promote breast cancer. To test this hypothesis, we performed in vivo studies using a mouse model of HER2+ breast cancer with Cre/loxP-mediated ablation of genes encoding JNK (Mapk8 and Mapk9) and the MAP2K (Map2k4 and Map2k7) that activate JNK in mammary epithelial cells. Kaplan-Meier analysis of tumor development demonstrated that JNK pathway deficiency promotes HER2+-driven breast cancer. Collectively, these data identify JNK pathway genes as potential suppressors for HER2+ breast cancer.


Subject(s)
Breast Neoplasms , MAP Kinase Signaling System , Humans , Female , Breast Neoplasms/pathology , Signal Transduction , Cell Transformation, Neoplastic/genetics , Mitogen-Activated Protein Kinase 8/metabolism , Cell Line, Tumor
2.
Proc Natl Acad Sci U S A ; 119(44): e2210434119, 2022 11.
Article in English | MEDLINE | ID: mdl-36282921

ABSTRACT

The cJun NH2-terminal kinase (JNK) signaling pathway in the liver promotes systemic changes in metabolism by regulating peroxisome proliferator-activated receptor α (PPARα)-dependent expression of the hepatokine fibroblast growth factor 21 (FGF21). Hepatocyte-specific gene ablation studies demonstrated that the Mapk9 gene (encoding JNK2) plays a key mechanistic role. Mutually exclusive inclusion of exons 7a and 7b yields expression of the isoforms JNK2α and JNK2ß. Here we demonstrate that Fgf21 gene expression and metabolic regulation are primarily regulated by the JNK2α isoform. To identify relevant substrates of JNK2α, we performed a quantitative phosphoproteomic study of livers isolated from control mice, mice with JNK deficiency in hepatocytes, and mice that express only JNK2α or JNK2ß in hepatocytes. We identified the JNK substrate retinoid X receptor α (RXRα) as a protein that exhibited JNK2α-promoted phosphorylation in vivo. RXRα functions as a heterodimeric partner of PPARα and may therefore mediate the effects of JNK2α signaling on Fgf21 expression. To test this hypothesis, we established mice with hepatocyte-specific expression of wild-type or mutated RXRα proteins. We found that the RXRα phosphorylation site Ser260 was required for suppression of Fgf21 gene expression. Collectively, these data establish a JNK-mediated signaling pathway that regulates hepatic Fgf21 expression.


Subject(s)
Metabolic Syndrome , PPAR alpha , Animals , Mice , Carrier Proteins/metabolism , Fibroblast Growth Factors/metabolism , Hepatocytes/metabolism , Liver/metabolism , Metabolic Syndrome/metabolism , Mice, Knockout , Phosphorylation , PPAR alpha/genetics , PPAR alpha/metabolism , Retinoid X Receptor alpha/genetics , Retinoid X Receptor alpha/metabolism , MAP Kinase Kinase 4/metabolism
3.
Proc Natl Acad Sci U S A ; 117(28): 16492-16499, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32601222

ABSTRACT

Metabolic stress causes activation of the cJun NH2-terminal kinase (JNK) signal transduction pathway. It is established that one consequence of JNK activation is the development of insulin resistance and hepatic steatosis through inhibition of the transcription factor PPARα. Indeed, JNK1/2 deficiency in hepatocytes protects against the development of steatosis, suggesting that JNK inhibition represents a possible treatment for this disease. However, the long-term consequences of JNK inhibition have not been evaluated. Here we demonstrate that hepatic JNK controls bile acid production. We found that hepatic JNK deficiency alters cholesterol metabolism and bile acid synthesis, conjugation, and transport, resulting in cholestasis, increased cholangiocyte proliferation, and intrahepatic cholangiocarcinoma. Gene ablation studies confirmed that PPARα mediated these effects of JNK in hepatocytes. This analysis highlights potential consequences of long-term use of JNK inhibitors for the treatment of metabolic syndrome.


Subject(s)
Bile Acids and Salts/metabolism , Cholangiocarcinoma/enzymology , Mitogen-Activated Protein Kinase 8/metabolism , Mitogen-Activated Protein Kinase 9/metabolism , Animals , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/physiopathology , Homeostasis , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinase 8/genetics , Mitogen-Activated Protein Kinase 9/genetics , PPAR alpha/genetics , PPAR alpha/metabolism
4.
Elife ; 52016 09 16.
Article in English | MEDLINE | ID: mdl-27635635

ABSTRACT

Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia.


Subject(s)
Adipose Tissue/physiology , Alternative Splicing , Antigens, Neoplasm/analysis , RNA-Binding Proteins/analysis , Thermogenesis , Animals , Antigens, Neoplasm/genetics , Computational Biology , Hyperglycemia , Mice, Inbred C57BL , Mice, Knockout , Neuro-Oncological Ventral Antigen , Obesity/physiopathology , RNA-Binding Proteins/genetics
5.
Cell Rep ; 14(10): 2273-80, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26947074

ABSTRACT

The cJun NH2-terminal kinase (JNK)-signaling pathway is implicated in metabolic syndrome, including dysregulated blood glucose concentration and insulin resistance. Fibroblast growth factor 21 (FGF21) is a target of the hepatic JNK-signaling pathway and may contribute to the regulation of glycemia. To test the role of FGF21, we established mice with selective ablation of the Fgf21 gene in hepatocytes. FGF21 deficiency in the liver caused marked loss of FGF21 protein circulating in the blood. Moreover, the protective effects of hepatic JNK deficiency to suppress metabolic syndrome in high-fat diet-fed mice were not observed in mice with hepatocyte-specific FGF21 deficiency, including reduced blood glucose concentration and reduced intolerance to glucose and insulin. Furthermore, we show that JNK contributes to the regulation of hepatic FGF21 expression during fasting/feeding cycles. These data demonstrate that the hepatokine FGF21 is a key mediator of JNK-regulated metabolic syndrome.


Subject(s)
Fibroblast Growth Factors/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Metabolic Diseases/etiology , Adipose Tissue/metabolism , Adipose Tissue/pathology , Animals , Blood Glucose/analysis , Cells, Cultured , Diet, High-Fat , Fibroblast Growth Factors/antagonists & inhibitors , Fibroblast Growth Factors/genetics , Gene Expression Regulation/drug effects , Hepatocytes/cytology , Hepatocytes/metabolism , Insulin/blood , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/genetics , Leptin/blood , MAP Kinase Kinase Kinases/deficiency , MAP Kinase Kinase Kinases/genetics , Male , Metabolic Diseases/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/etiology , Obesity/metabolism , Peroxisomal Bifunctional Enzyme/genetics , Peroxisomal Bifunctional Enzyme/metabolism , Protein Kinase Inhibitors/pharmacology , Real-Time Polymerase Chain Reaction , Resistin/blood , Signal Transduction , Mitogen-Activated Protein Kinase Kinase Kinase 11
6.
Elife ; 5: e10031, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26910012

ABSTRACT

The cJun NH2-terminal kinase (JNK) signaling pathway is implicated in the response to metabolic stress. Indeed, it is established that the ubiquitously expressed JNK1 and JNK2 isoforms regulate energy expenditure and insulin resistance. However, the role of the neuron-specific isoform JNK3 is unclear. Here we demonstrate that JNK3 deficiency causes hyperphagia selectively in high fat diet (HFD)-fed mice. JNK3 deficiency in neurons that express the leptin receptor LEPRb was sufficient to cause HFD-dependent hyperphagia. Studies of sub-groups of leptin-responsive neurons demonstrated that JNK3 deficiency in AgRP neurons, but not POMC neurons, was sufficient to cause the hyperphagic response. These effects of JNK3 deficiency were associated with enhanced excitatory signaling by AgRP neurons in HFD-fed mice. JNK3 therefore provides a mechanism that contributes to homeostatic regulation of energy balance in response to metabolic stress.


Subject(s)
Mitogen-Activated Protein Kinase 10/metabolism , Neurons/physiology , Stress, Physiological , Agouti-Related Protein/analysis , Animals , Diet, High-Fat , Hyperphagia , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 10/deficiency
7.
Cell Metab ; 20(3): 512-25, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25043817

ABSTRACT

The cJun NH2-terminal kinase (JNK) stress signaling pathway is implicated in the metabolic response to the consumption of a high-fat diet, including the development of obesity and insulin resistance. These metabolic adaptations involve altered liver function. Here, we demonstrate that hepatic JNK potently represses the nuclear hormone receptor peroxisome proliferator-activated receptor α (PPARα). Therefore, JNK causes decreased expression of PPARα target genes that increase fatty acid oxidation and ketogenesis and promote the development of insulin resistance. We show that the PPARα target gene fibroblast growth factor 21 (Fgf21) plays a key role in this response because disruption of the hepatic PPARα-FGF21 hormone axis suppresses the metabolic effects of JNK deficiency. This analysis identifies the hepatokine FGF21 as a critical mediator of JNK signaling in the liver.


Subject(s)
Fibroblast Growth Factors/metabolism , Liver/metabolism , MAP Kinase Signaling System , PPAR alpha/metabolism , Animals , Diet, High-Fat/adverse effects , Gene Deletion , Insulin Resistance , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/genetics , Obesity/metabolism
8.
Genes Dev ; 27(21): 2345-55, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24186979

ABSTRACT

The cJun N-terminal kinase (JNK) signaling pathway is a key mediator of metabolic stress responses caused by consuming a high-fat diet, including the development of obesity. To test the role of JNK, we examined diet-induced obesity in mice with targeted ablation of Jnk genes in the anterior pituitary gland. These mice exhibited an increase in the pituitary expression of thyroid-stimulating hormone (TSH), an increase in the blood concentration of thyroid hormone (T4), increased energy expenditure, and markedly reduced obesity compared with control mice. The increased amount of pituitary TSH was caused by reduced expression of type 2 iodothyronine deiodinase (Dio2), a gene that is required for T4-mediated negative feedback regulation of TSH expression. These data establish a molecular mechanism that accounts for the regulation of energy expenditure and the development of obesity by the JNK signaling pathway.


Subject(s)
Diet, High-Fat , Iodide Peroxidase/metabolism , MAP Kinase Signaling System/physiology , Obesity/physiopathology , Animals , Energy Metabolism/genetics , Feedback, Physiological , Gene Expression Regulation , MAP Kinase Signaling System/genetics , Mice , Obesity/genetics , Pituitary Gland, Anterior/metabolism , Thyroid Hormones/metabolism , Iodothyronine Deiodinase Type II
9.
Proc Natl Acad Sci U S A ; 109(30): 12046-51, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22753496

ABSTRACT

The c-Jun NH(2)-terminal kinase (JNK) signal transduction pathway is implicated in cancer, but the role of JNK in tumorigenesis is poorly understood. Here, we demonstrate that the JNK signaling pathway reduces the development of invasive adenocarcinoma in the phosphatase and tensin homolog (Pten) conditional deletion model of prostate cancer. Mice with JNK deficiency in the prostate epithelium (ΔJnk ΔPten mice) develop androgen-independent metastatic prostate cancer more rapidly than control (ΔPten) mice. Similarly, prevention of JNK activation in the prostate epithelium (ΔMkk4 ΔMkk7 ΔPten mice) causes rapid development of invasive adenocarcinoma. We found that JNK signaling defects cause an androgen-independent expansion of the immature progenitor cell population in the primary tumor. The JNK-deficient progenitor cells display increased proliferation and tumorigenic potential compared with progenitor cells from control prostate tumors. These data demonstrate that the JNK and PTEN signaling pathways can cooperate to regulate the progression of prostate neoplasia to invasive adenocarcinoma.


Subject(s)
Adenocarcinoma/physiopathology , Cell Transformation, Neoplastic/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/physiology , PTEN Phosphohydrolase/metabolism , Prostatic Neoplasms/physiopathology , Animals , Histological Techniques , Male , Mice , Mice, Transgenic , Microscopy, Fluorescence
10.
Cancer Res ; 72(2): 472-81, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22127926

ABSTRACT

cJun NH(2)-terminal kinase (JNK) signaling has been implicated in the developmental morphogenesis of epithelial organs. In this study, we employed a compound deletion of the murine Jnk1 and Jnk2 genes in the mammary gland to evaluate the requirement for these ubiquitously expressed genes in breast development and tumorigenesis. JNK1/2 was not required for breast epithelial cell proliferation or motility. However, JNK1/2 deficiency caused increased branching morphogenesis and defects in the clearance of lumenal epithelial cells. In the setting of breast cancer development, JNK1/2 deficiency significantly increased tumor formation. Together, these findings established that JNK signaling is required for normal mammary gland development and that it has a suppressive role in mammary tumorigenesis.


Subject(s)
MAP Kinase Signaling System/physiology , Mammary Glands, Animal/enzymology , Mammary Glands, Animal/growth & development , Mammary Neoplasms, Experimental/enzymology , Mitogen-Activated Protein Kinase 8/metabolism , Mitogen-Activated Protein Kinase 9/metabolism , Animals , Cell Growth Processes/physiology , Cell Movement/physiology , Female , Gene Expression , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Nude , Mice, Transgenic , Mitogen-Activated Protein Kinase 8/deficiency , Mitogen-Activated Protein Kinase 8/genetics , Mitogen-Activated Protein Kinase 9/deficiency , Mitogen-Activated Protein Kinase 9/genetics
11.
Genes Dev ; 24(3): 256-64, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20080940

ABSTRACT

The cJun N-terminal kinase 1 (JNK1) is implicated in diet-induced obesity. Indeed, germline ablation of the murine Jnk1 gene prevents diet-induced obesity. Here we demonstrate that selective deficiency of JNK1 in the murine nervous system is sufficient to suppress diet-induced obesity. The failure to increase body mass is mediated, in part, by increased energy expenditure that is associated with activation of the hypothalamic-pituitary-thyroid axis. Disruption of thyroid hormone function prevents the effects of nervous system JNK1 deficiency on body mass. These data demonstrate that the hypothalamic-pituitary-thyroid axis represents an important target of metabolic signaling by JNK1.


Subject(s)
Hypothalamo-Hypophyseal System/metabolism , Mitogen-Activated Protein Kinase 8/metabolism , Pituitary Gland/metabolism , Thyroid Gland/metabolism , Animals , Eating , Insulin/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitogen-Activated Protein Kinase 8/genetics , Obesity/metabolism , Signal Transduction
12.
Mol Cell Biol ; 30(1): 98-105, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19841067

ABSTRACT

Bcl2-modifying factor (Bmf) is a member of the BH3-only group of proapoptotic proteins. To test the role of Bmf in vivo, we constructed mice with a series of mutated Bmf alleles that disrupt Bmf expression, prevent Bmf phosphorylation by the c-Jun NH(2)-terminal kinase (JNK) on Ser(74), or mimic Bmf phosphorylation on Ser(74). We report that the loss of Bmf causes defects in uterovaginal development, including an imperforate vagina and hydrometrocolpos. We also show that the phosphorylation of Bmf on Ser(74) can contribute to a moderate increase in levels of Bmf activity. Studies of compound mutants with the related gene Bim demonstrated that Bim and Bmf exhibit partially redundant functions in vivo. Thus, developmental ablation of interdigital webbing on mouse paws and normal lymphocyte homeostasis require the cooperative activity of Bim and Bmf.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Apoptosis Regulatory Proteins/physiology , Apoptosis , Membrane Proteins/physiology , Proto-Oncogene Proteins c-bcl-2/physiology , Proto-Oncogene Proteins/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis Regulatory Proteins/genetics , Bcl-2-Like Protein 11 , Cell Survival , Female , Homeostasis , Hydrocolpos/embryology , JNK Mitogen-Activated Protein Kinases/physiology , Limb Deformities, Congenital/embryology , Lymphocytes/cytology , Lymphocytes/physiology , Membrane Proteins/genetics , Mice , Mice, Mutant Strains , Mutation , Phosphorylation , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Serine/metabolism , Vagina/abnormalities , Vagina/embryology
13.
Mol Cell Biol ; 30(1): 106-15, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19841069

ABSTRACT

Obesity caused by feeding of a high-fat diet (HFD) is associated with an increased activation of c-Jun NH(2)-terminal kinase 1 (JNK1). Activated JNK1 is implicated in the mechanism of obesity-induced insulin resistance and the development of metabolic syndrome and type 2 diabetes. Significantly, Jnk1(-)(/)(-) mice are protected against HFD-induced obesity and insulin resistance. Here we show that an ablation of the Jnk1 gene in skeletal muscle does not influence HFD-induced obesity. However, muscle-specific JNK1-deficient (M(KO)) mice exhibit improved insulin sensitivity compared with control wild-type (M(WT)) mice. Thus, insulin-stimulated AKT activation is suppressed in muscle, liver, and adipose tissue of HFD-fed M(WT) mice but is suppressed only in the liver and adipose tissue of M(KO) mice. These data demonstrate that JNK1 in muscle contributes to peripheral insulin resistance in response to diet-induced obesity.


Subject(s)
Insulin Resistance , Mitogen-Activated Protein Kinase 8/physiology , Muscle, Skeletal/enzymology , Obesity/physiopathology , Animals , Dietary Fats , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 8/genetics , Obesity/enzymology , Obesity/etiology , Organ Specificity , Signal Transduction
14.
Cell Metab ; 10(6): 491-8, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19945406

ABSTRACT

Nonalcoholic steatosis (fatty liver) is a major cause of liver dysfunction that is associated with insulin resistance and metabolic syndrome. The cJun NH(2)-terminal kinase 1 (JNK1) signaling pathway is implicated in the pathogenesis of hepatic steatosis and drugs that target JNK1 may be useful for treatment of this disease. Indeed, mice with defects in JNK1 expression in adipose tissue are protected against hepatic steatosis. Here we report that mice with specific ablation of Jnk1 in hepatocytes exhibit glucose intolerance, insulin resistance, and hepatic steatosis. JNK1 therefore serves opposing actions in liver and adipose tissue to both promote and prevent hepatic steatosis. This finding has potential implications for the design of JNK1-selective drugs for the treatment of metabolic syndrome.


Subject(s)
Fatty Liver/metabolism , Glucose Intolerance/metabolism , Hepatocytes/metabolism , Insulin Resistance/physiology , Mitogen-Activated Protein Kinase 8/genetics , Mitogen-Activated Protein Kinase 8/metabolism , Animals , Mice , Mice, Transgenic , Organ Specificity , Signal Transduction/physiology
15.
Genes Dev ; 21(18): 2336-46, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17875667

ABSTRACT

JIP scaffold proteins are implicated in the regulation of protein kinase signal transduction pathways. To test the physiological role of these scaffold proteins, we examined the phenotype of compound mutant mice that lack expression of JIP proteins. These mice were found to exhibit severe defects in N-methyl-D-aspartic acid (NMDA) receptor function, including decreased NMDA-evoked current amplitude, cytoplasmic Ca(++), and gene expression. The decreased NMDA receptor activity in JIP-deficient neurons is associated with reduced tyrosine phosphorylation of NR2 subunits of the NMDA receptor. JIP complexes interact with the SH2 domain of cFyn and may therefore promote tyrosine phosphorylation and activity of the NMDA receptor. We conclude that JIP scaffold proteins are critically required for normal NMDA receptor function.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , N-Methylaspartate/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , COS Cells , Cerebellum/embryology , Cerebellum/metabolism , Chlorocebus aethiops , Kinesins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Receptors, N-Methyl-D-Aspartate/physiology , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL