Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 255: 121479, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38520777

ABSTRACT

Aerobic granular sludge (AGS) at wastewater treatment plants (WWTPs) are known to produce nitrous oxide (N2O), a greenhouse gas which has a ∼300 times higher global warming potential than carbon dioxide. In this research, we studied N2O emissions from different sizes of AGS developed at a dissolved oxygen (DO) level of 2 mgO2/L while exposing them to disturbances at various DO concentrations ranging from 1 to 4 mgO2/L. Five different AGS size classes were studied: 212-600 µm, 600-1000 µm, 1000-1400 µm, 1400-2000 µm, and > 2000 µm. Metagenomic data showed N2O reductase genes (nosZ) were more abundant in the smaller AGS sizes which aligned with the observation of higher N2O reduction rates in small AGS under anaerobic conditions. However, when oxygen was present, the activity measurements of N2O emission showed an opposite trend compared to metagenomic data, smaller AGS (212 to 1000 µm) emitted significantly higher N2O (p < 0.05) than larger AGS (1000 µm to >2000 µm) at DO of 2, 3, and 4 mgO2/L. The N2O emission rate showed positive correlation with both oxygen levels and nitrification rate. This pattern indicates a connection between N2O emission and nitrification. In addition, the data suggested the penetration of oxygen into the anoxic zone of granules might have hindered nitrous oxide reduction, resulting in incomplete denitrification stopping at N2O and consequently contributing to an increase in N2O emissions. This work sets the stage to better understand the impacts of AGS size on N2O emissions in WWTPs under different disturbance of DO conditions, and thus ensure that wastewater treatment will comply with possible future regulations demanding lowering greenhouse gas emissions in an effort to combat climate change.

2.
Chemosphere ; 308(Pt 2): 136378, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36113651

ABSTRACT

Maximizing nutrient removal and minimizing greenhouse gas (GHG) emissions is imperative for the future of wastewater treatment. As municipalities focus on minimizing their carbon footprints, future permits could regulate GHG emissions from wastewater treatment plants. This study investigates how nitrous oxide (N2O) emissions are affected by dissolved oxygen and nitrite concentrations, providing potential strategies to meet possible gaseous emission permits. A lab-scale sequencing batch reactor (SBR) was enriched with aerobic granular sludge (AGS) capable of phosphate removal and simultaneous nitrification-denitrification (SND). N2O emissions were tracked at varying dissolved oxygen (DO) and nitrite (NO2-) concentrations, with >99% SND efficiency and 93%-100% phosphate removal efficiency. Higher DO and NO2- concentrations were associated with higher N2O emissions. Emissions were minimized at a DO concentration of 1 mg L-1, with an average emission factor of 0.18% of oxidized NH3-N emitted as N2O-N, which is lower than factors from many full-scale treatment plants (Vasilaki et al., 2019) and similar to a Nereda® full-scale AGS SBR (van Dijk et al., 2021). This challenges assertions that AGS emits more N2O than conventional activated sludge, although more research at full-scale with influent quality variations is required to confirm this trend. Molecular analyses revealed that the efficient SND was likely achieved with shortcut nitrogen removal facilitated by a low presence of nitrite oxidizing bacteria and a large population of denitrifying phosphate accumulating organisms, which far outnumbered denitrifying glycogen accumulating organisms.


Subject(s)
Greenhouse Gases , Sewage , Bioreactors/microbiology , Denitrification , Glycogen/analysis , Greenhouse Gases/analysis , Nitrification , Nitrites/analysis , Nitrogen/analysis , Nitrogen Dioxide/analysis , Nitrous Oxide/analysis , Oxygen/analysis , Phosphates/analysis , Sewage/microbiology , Wastewater/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...