Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(7): eadl4876, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38354250

ABSTRACT

The synaptonemal complex (SC) is a zipper-like protein assembly that links homologous chromosomes to regulate recombination and segregation during meiosis. The SC has been notoriously refractory to in vitro reconstitution, thus leaving its molecular organization largely unknown. Here, we report a moonlighting function of two paralogous S-phase kinase-associated protein 1 (Skp1)-related proteins (SKR-1 and SKR-2), well-known adaptors of the Skp1-Cul1-F-box (SCF) ubiquitin ligase, as the key missing components of the SC in Caenorhabditis elegans. SKR proteins repurpose their SCF-forming interfaces to dimerize and interact with meiosis-specific SC proteins, thereby driving synapsis independent of SCF activity. SKR-1 enables the formation of the long-sought-after soluble complex with previously identified SC proteins in vitro, which we propose it to represent a complete SC building block. Our findings demonstrate how a conserved cell cycle regulator has been co-opted to interact with rapidly evolving meiotic proteins to construct the SC and provide a foundation for understanding its structure and assembly mechanisms.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Cycle Proteins/metabolism , S-Phase Kinase-Associated Proteins/genetics , S-Phase Kinase-Associated Proteins/metabolism , Synaptonemal Complex/metabolism
2.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-38148986

ABSTRACT

Immunofluorescence microscopy is a widely adopted method for studying meiotic prophase in the nematode model organism, Caenorhabditis elegans . An in-depth examination of specific meiotic processes requires the quantitative analysis of immunofluorescence images, which often involves the segmentation of individual cells or nuclei. Here, we introduce our image analysis pipeline to automate significant portions of this task. This pipeline relies on the powerful deep learning model Cellpose 2.0 to segment cellular structures. To further improve the segmentation accuracy for germline nuclei stained for chromatin or synaptonemal complexes, we retrained the generalist Cellpose model and integrated our data processing pipeline into the easy-to-use Cell-ACDC image analysis software. Our pipeline thus makes deep learning-based segmentation of nuclei in the distal germline of C. elegans accessible for users without coding experience.

3.
J Vis Exp ; (187)2022 09 13.
Article in English | MEDLINE | ID: mdl-36190293

ABSTRACT

During meiosis, homologous chromosomes must recognize and adhere to one another to allow for their correct segregation. One of the key events that secures the interaction of homologous chromosomes is the assembly of the synaptonemal complex (SC) in meiotic prophase I. Even though there is little sequence homology between protein components within the SC among different species, the general structure of the SC has been highly conserved during evolution. In electron micrographs, the SC appears as a tripartite, ladder-like structure composed of lateral elements or axes, transverse filaments, and a central element. However, precisely identifying the localization of individual components within the complex by electron microscopy to determine the molecular structure of the SC remains challenging. By contrast, fluorescence microscopy allows for the identification of individual protein components within the complex. However, since the SC is only ~100 nm wide, its substructure cannot be resolved by diffraction-limited conventional fluorescence microscopy. Thus, determining the molecular architecture of the SC requires super-resolution light microscopy techniques such as structured illumination microscopy (SIM), stimulated-emission depletion (STED) microscopy, or single-molecule localization microscopy (SMLM). To maintain the structure and interactions of individual components within the SC, it is important to observe the complex in an environment that is close to its native environment in the germ cells. Therefore, we demonstrate an immunohistochemistry and imaging protocol that enables the study of the substructure of the SC in intact, extruded Caenorhabditis elegans germline tissue with SMLM and STED microscopy. Directly fixing the tissue to the coverslip reduces the movement of the samples during imaging and minimizes aberrations in the sample to achieve the high resolution necessary to visualize the substructure of the SC in its biological context.


Subject(s)
Caenorhabditis elegans , Synaptonemal Complex , Animals , Caenorhabditis elegans/metabolism , Germ Cells , Meiosis , Microscopy/methods
4.
Nat Commun ; 13(1): 3133, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35668089

ABSTRACT

Multi-channel detection in single-molecule localization microscopy greatly increases information content for various biological applications. Here, we present globLoc, a graphics processing unit based global fitting algorithm with flexible PSF modeling and parameter sharing, to extract maximum information from multi-channel single molecule data. As signals in multi-channel data are highly correlated, globLoc links parameters such as 3D coordinates or photon counts across channels, improving localization precision and robustness. We show, both in simulations and experiments, that global fitting can substantially improve the 3D localization precision for biplane and 4Pi single-molecule localization microscopy and color assignment for ratiometric multicolor imaging.


Subject(s)
Nanotechnology , Single Molecule Imaging , Algorithms , Nanotechnology/methods
5.
J Cell Biol ; 219(5)2020 05 04.
Article in English | MEDLINE | ID: mdl-32211899

ABSTRACT

The synaptonemal complex (SC) is a tripartite protein scaffold that forms between homologous chromosomes during meiosis. Although the SC is essential for stable homologue pairing and crossover recombination in diverse eukaryotes, it is unknown how individual components assemble into the highly conserved SC structure. Here we report the biochemical identification of two new SC components, SYP-5 and SYP-6, in Caenorhabditis elegans. SYP-5 and SYP-6 are paralogous to each other and play redundant roles in synapsis, providing an explanation for why these genes have evaded previous genetic screens. Superresolution microscopy reveals that they localize between the chromosome axes and span the width of the SC in a head-to-head manner, similar to the orientation of other known transverse filament proteins. Using genetic redundancy and structure-function analyses to truncate C-terminal tails of SYP-5/6, we provide evidence supporting the role of SC in both limiting and promoting crossover formation.


Subject(s)
Caenorhabditis elegans/genetics , Chromosomal Proteins, Non-Histone/genetics , Recombination, Genetic/genetics , Synaptonemal Complex/genetics , Animals , Chromosome Pairing/genetics , Chromosomes/genetics , Crossing Over, Genetic/genetics , Meiosis/genetics , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...