Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Commun Biol ; 7(1): 77, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38200184

ABSTRACT

CCDC88B is a risk factor for several chronic inflammatory diseases in humans and its inactivation causes a migratory defect in DCs in mice. CCDC88B belongs to a family of cytoskeleton-associated scaffold proteins that feature protein:protein interaction domains. Here, we identified the Rho/Rac Guanine Nucleotide Exchange Factor 2 (ARHGEF2) and the RAS Protein Activator Like 3 (RASAL3) as CCDC88B physical and functional interactors. Mice defective in Arhgef2 or Rasal3 show dampened neuroinflammation, and display altered cellular response and susceptibility to colitis; ARHGEF2 maps to a human Chromosome 1 locus associated with susceptibility to IBD. Arhgef2 and Rasal3 mutant DCs show altered migration and motility in vitro, causing either reduced (Arhgef2) or enhanced (Rasal3) migratory properties. The CCDC88B/RASAL3/ARHGEF2 complex appears to regulate DCs migration by modulating activation of RHOA, with ARHGEF2 and RASAL3 acting in opposite regulatory fashions, providing a molecular mechanism for the involvement of these proteins in DCs immune functions.


Subject(s)
Colitis , Neuroinflammatory Diseases , Animals , Humans , Mice , Cell Physiological Phenomena , Colitis/genetics , Cytoskeleton , Dendritic Cells , Rho Guanine Nucleotide Exchange Factors/genetics
2.
bioRxiv ; 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37986739

ABSTRACT

Objective: We sought to create and characterize a mouse model of the inflammatory, cerebral demyelinating phenotype of X-linked adrenoleukodystrophy (ALD) that would facilitate the study of disease pathogenesis and therapy development. We also sought to cross-validate potential therapeutic targets such as fibrin, oxidative stress, and the NLRP3 inflammasome, in post-mortem human and murine brain tissues. Background: ALD is caused by mutations in the gene ABCD1 encoding a peroxisomal transporter. More than half of males with an ABCD1 mutation develop the cerebral phenotype (cALD). Incomplete penetrance and absence of a genotype-phenotype correlation imply a role for environmental triggers. Mechanistic studies have been limited by the absence of a cALD phenotype in the Abcd1-null mouse. Methods: We generated a cALD phenotype in 8-week-old, male Abcd1-null mice by deploying a two-hit method that combines cuprizone (CPZ) and experimental autoimmune encephalomyelitis (EAE) models. We employed in vivo MRI and post-mortem immunohistochemistry to evaluate myelin loss, astrogliosis, blood-brain barrier (BBB) disruption, immune cell infiltration, fibrin deposition, oxidative stress, and Nlrp3 inflammasome activation in mice. We used bead-based immunoassay and immunohistochemistry to evaluate IL-18 in CSF and post-mortem human cALD brain tissue. Results: MRI studies revealed T2 hyperintensities and post-gadolinium enhancement in the medial corpus callosum of cALD mice, similar to human cALD lesions. Both human and mouse cALD lesions shared common histologic features of myelin phagocytosis, myelin loss, abundant microglial activation, T and B-cell infiltration, and astrogliosis. Compared to wild-type controls, Abcd1-null mice had more severe cerebral inflammation, demyelination, fibrin deposition, oxidative stress, and IL-18 activation. IL-18 immunoreactivity co-localized with macrophages/microglia in the perivascular region of both human and mouse brain tissue. Interpretation: This novel mouse model of cALD suggests loss of Abcd1 function predisposes to more severe cerebral inflammation, oxidative stress, fibrin deposition, and Nlrp3 pathway activation, which parallels the findings seen in humans with cALD. We expect this model to enable long-sought investigations into cALD mechanisms and accelerate development of candidate therapies for lesion prevention, cessation, and remyelination.

3.
Brain ; 146(4): 1483-1495, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36319587

ABSTRACT

The trafficking of autoreactive leucocytes across the blood-brain barrier endothelium is a hallmark of multiple sclerosis pathogenesis. Although the blood-brain barrier endothelium represents one of the main CNS borders to interact with the infiltrating leucocytes, its exact contribution to neuroinflammation remains understudied. Here, we show that Mcam identifies inflammatory brain endothelial cells with pro-migratory transcriptomic signature during experimental autoimmune encephalomyelitis. In addition, MCAM was preferentially upregulated on blood-brain barrier endothelial cells in multiple sclerosis lesions in situ and at experimental autoimmune encephalomyelitis disease onset by molecular MRI. In vitro and in vivo, we demonstrate that MCAM on blood-brain barrier endothelial cells contributes to experimental autoimmune encephalomyelitis development by promoting the cellular trafficking of TH1 and TH17 lymphocytes across the blood-brain barrier. Last, we showcase ST14 as an immune ligand to brain endothelial MCAM, enriched on CD4+ T lymphocytes that cross the blood-brain barrier in vitro, in vivo and in multiple sclerosis lesions as detected by flow cytometry on rapid autopsy derived brain tissue from multiple sclerosis patients. Collectively, our findings reveal that MCAM is at the centre of a pathological pathway used by brain endothelial cells to recruit pathogenic CD4+ T lymphocyte from circulation early during neuroinflammation. The therapeutic targeting of this mechanism is a promising avenue to treat multiple sclerosis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Humans , Blood-Brain Barrier/pathology , Brain/pathology , CD146 Antigen/metabolism , CD4-Positive T-Lymphocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Endothelial Cells/metabolism , Endothelium/metabolism , Endothelium/pathology , Multiple Sclerosis/pathology , Neuroinflammatory Diseases
4.
Neurooncol Adv ; 4(1): vdac174, 2022.
Article in English | MEDLINE | ID: mdl-36567957

ABSTRACT

Background: High-grade gliomas (HGG) with BRAFV600E mutation represent a unique subset of central nervous system tumors. Targeted therapies including BRAF and MEK inhibitors are now being explored as possible new treatment options. Methods: We report an 18-year-old female with a grade 3 pleomorphic xanthoastrocytoma treated upfront with dabrafenib and trametinib. We also conducted a systematic literature review of patients with HGG and BRAFV600E mutations treated with BRAF inhibitors. Results: Despite local recurrences resected surgically, the patient has been on dabrafenib and trametinib for more than 54 months. Thirty-two patients with HGG and BRAFV600E mutations treated with BRAF inhibitors were retrieved through our systematic review of the literature. Only 1 young patient with an anaplastic ganglioglioma was treated upfront with a BRAF inhibitor with a curative intent. Best response reported with radiation therapy and systemic therapy was a stable disease (SD) for 18 patients (56.3%) and progressive disease (PD) for 9 patients (28.1%). Responses to treatment regimens that included BRAF inhibitors were reported in 31 patients and included 4 complete responses (12.9%), 23 partial responses (74.2%), 2 SDs (6.5%), and 2 PDs (6.5%). Conclusions: Our patient had durable disease control with dabrafenib and trametinib. Given favorable responses reported in patients with HGG treated with BRAF inhibitors, we believe that upfront targeted therapy is a possible treatment approach that should be studied in the context of a clinical trial.

5.
Article in English | MEDLINE | ID: mdl-36241608

ABSTRACT

BACKGROUND AND OBJECTIVES: In multiple sclerosis (MS), peripheral immune cells use various cell trafficking molecules to infiltrate the CNS where they cause damage.The objective of this study was to investigate the involvement of coxsackie and adenovirus receptor-like membrane protein (CLMP) in the migration of immune cells into the CNS of patients with MS. METHODS: Expression of CLMP was measured in primary cultures of human brain endothelial cells (HBECs) and human meningeal endothelial cells (HMECs), postmortem brain samples, and peripheral blood mononuclear cells (PBMCs) from patients with MS and controls by RNA sequencing, quantitative PCR, immunohistochemistry, and flow cytometry. In vitro migration assays using HBECs and HMECs were performed to evaluate the function of CLMP. RESULTS: Using bulk RNA sequencing of primary cultures of human brain and meningeal endothelial cells (ECs), we have identified CLMP as a new potential cell trafficking molecule upregulated in inflammatory conditions. We first confirmed the upregulation of CLMP at the protein level on TNFα-activated and IFNγ-activated primary cultures of human brain and meningeal ECs. In autopsy brain specimens from patients with MS, we demonstrated an overexpression of endothelial CLMP in active MS lesions when compared with normal control brain tissue. Flow cytometry of human PBMCs demonstrated an increased frequency of CLMP+ B lymphocytes and monocytes in patients with MS, when compared with that in healthy controls. The use of a blocking antibody against CLMP reduced the migration of immune cells across the human brain and meningeal ECs in vitro. Finally, we found CLMP+ immune cell infiltrates in the perivascular area of parenchymal lesions and in the meninges of patients with MS. DISCUSSION: Collectively, our data demonstrate that CLMP is an adhesion molecule used by immune cells to access the CNS during neuroinflammatory disorders such as MS. CLMP could represent a target for a new treatment of neuroinflammatory conditions.


Subject(s)
Multiple Sclerosis , Humans , Brain/metabolism , Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism , Endothelial Cells/metabolism , Leukocytes/metabolism , Leukocytes, Mononuclear , Tumor Necrosis Factor-alpha/metabolism
6.
Ocul Oncol Pathol ; 8(2): 133-140, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35959159

ABSTRACT

Introduction: Uveal melanoma (UM) is the most common primary intraocular malignancy in adults, and despite treatment of the primary tumor, approximately 15%-50% of patients will develop metastatic disease. Based on gene expression profiling (GEPs), UM can be categorized as Class 1A (low metastatic risk), Class 1B (intermediate metastatic risk), or Class 2 (high metastatic risk). PReferentially expressed Antigen in MElanoma (PRAME) status is an independent prognostic UM biomarker and a potential target for immunotherapy in metastatic UM. PRAME expression status can be detected in tumors using reverse-transcription polymerase chain reaction (RT-PCR). More recently, immunohistochemistry (IHC) has been developed to detect PRAME protein expression. Here, we employed both techniques to evaluate PRAME expression in 18 UM enucleations. Methods: Tumor material from the 18 UM patients who underwent enucleation was collected by fine-needle aspiration before or during enucleation and sent for GEP and PRAME analysis by RT-PCR. Histologic sections from these patients were stained with an anti-PRAME monoclonal antibody. We collected patient demographics and tumor characteristics and included this with our analysis of GEP class, PRAME status by RT-PCR, and PRAME status by IHC. PRAME IHC and RT-PCR results were compared. Results: Twelve males (12/18) and 6 females (6/18) with an average age of 60.6 years underwent enucleation for UM. TNM staging of the UM diagnosed Stage I in 2 patients (2/18), Stage II in 7 patients (7/18), Stage III in 8 patients (8/18), and Stage IV in 1 (1/18). GEP was Class 1A in 6 tumors (6/18), Class 1B in 6 tumors (6/18), and Class 2 in 6 tumors (6/18). PRAME IHC showed diffusely positive labeling of all UM cells in 2/18 enucleations; negative IHC labeling of UM cells in 9/18 enucleations; and IHC labeling of subsets of UM cells in 7/18 enucleations. Eleven of the 17 UMs tested for PRAME by both RT-PCR and IHC had consistent PRAME results. In the remaining 6/17 cases tested by both modalities, PRAME results were discordant between RT-PCR and IHC. Conclusions: We find that PRAME IHC distinguishes PRAME-positive and PRAME-negative UM tumor cells. Interestingly, IHC reveals focal PRAME expression in subsets of tumor cells consistent with tumor heterogeneity. PRAME RT-PCR and IHC provide concordant results in most of our cases. We suggest that discordance in PRAME results could arise from spatial or temporal variation in PRAME expression between tumor cells. Further studies are required to determine the prognostic implications of PRAME IHC in UM.

7.
J Nucl Med ; 63(11): 1693-1700, 2022 11.
Article in English | MEDLINE | ID: mdl-35332092

ABSTRACT

Clinical imaging performance using a fluorescent antibody was compared across 3 cancers to elucidate physical and biologic factors contributing to differential translation of epidermal growth factor receptor (EGFR) expression to macroscopic fluorescence in tumors. Methods: Thirty-one patients with high-grade glioma (HGG, n = 5), head-and-neck squamous cell carcinoma (HNSCC, n = 23), or lung adenocarcinoma (LAC, n = 3) were systemically infused with 50 mg of panitumumab-IRDye800 1-3 d before surgery. Intraoperative open-field fluorescent images of the surgical field were acquired, with imaging device settings and operating room lighting conditions being tested on tissue-mimicking phantoms. Fluorescence contrast and margin size were measured on resected specimen surfaces. Antibody distribution and EGFR immunoreactivity were characterized in macroscopic and microscopic histologic structures. The integrity of the blood-brain barrier was examined via tight junction protein (Claudin-5) expression with immunohistochemistry. Stepwise multivariate linear regression of biologic variables was performed to identify independent predictors of panitumumab-IRDye800 concentration in tissue. Results: Optimally acquired at the lowest gain for tumor detection with ambient light, intraoperative fluorescence imaging enhanced tissue-size dependent tumor contrast by 5.2-fold, 3.4-fold, and 1.4-fold in HGG, HNSCC, and LAC, respectively. Tissue surface fluorescence target-to-background ratio correlated with margin size and identified 78%-97% of at-risk resection margins ex vivo. In 4-µm-thick tissue sections, fluorescence detected tumor with 0.85-0.89 areas under the receiver-operating-characteristic curves. Preferential breakdown of blood-brain barrier in HGG improved tumor specificity of intratumoral antibody distribution relative to that of EGFR (96% vs. 80%) despite its reduced concentration (3.9 ng/mg of tissue) compared with HNSCC (8.1 ng/mg) and LAC (6.3 ng/mg). Cellular EGFR expression, tumor cell density, plasma antibody concentration, and delivery barrier were independently associated with local intratumoral panitumumab-IRDye800 concentration, with 0.62 goodness of fit of prediction. Conclusion: In multicancer clinical imaging of a receptor-ligand-based molecular probe, plasma antibody concentration, delivery barrier, and intratumoral EGFR expression driven by cellular biomarker expression and tumor cell density led to heterogeneous intratumoral antibody accumulation and spatial distribution whereas tumor size, resection margin, and intraoperative imaging settings substantially influenced macroscopic tumor contrast.


Subject(s)
Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck , Panitumumab , Optical Imaging/methods , ErbB Receptors/metabolism , Margins of Excision , Cell Line, Tumor
8.
Clin Neurol Neurosurg ; 214: 107180, 2022 03.
Article in English | MEDLINE | ID: mdl-35217475

ABSTRACT

BACKGROUND: During nerve repair, an intraoperative assessment of the quality of the nerve stump is critically important for achieving a good outcome. Frozen section analysis of osmium-hematoxylin stained sections has not been adopted at many centers, including ours. This has left us with bread-loafing the nerve and visually assessing for healthy fascicles. A technique that would allow for rapid, safe, quantitative intraoperative assessment of nerve quality, including myelin quantity, would be beneficial. Stimulated Raman Scattering (SRS) microscopy is a rapid, label-free technique that images lipids well that may be uniquely suited for this purpose. OBJECTIVE: To describe our initial experience and lessons learned using SRS microscopy for evaluation of peripheral nerve tissue. METHODS: We present 6 cases during which SRS microscopy was used to evaluate peripheral nerve tissue, including standard histology and SRS microscopy images, where applicable. RESULTS: Our current technique involves OCT embedding the nerve tissue and then cutting 70 µm sections on a standard cryostat. The SRS microscope slide is modified to change the buffer depth from 100 µm to 50 µm. We analyzed the gray scale composite images, merged from the CH2 (lipid) channel and CH3 (protein) channel. This technique reliably produced cross-sectional images and showed good capability for imaging myelinated axons within fascicles. CONCLUSIONS: We demonstrate here an innovative approach to quantifying myelin in peripheral nerve using Stimulated Raman Scattering microscopy. This should prove useful in the care and surgical treatment of patients with peripheral nerve injuries.


Subject(s)
Nonlinear Optical Microscopy , Peripheral Nerves , Humans , Peripheral Nerves/surgery , Spectrum Analysis, Raman/methods
9.
Sci Transl Med ; 14(626): eabj0473, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34985970

ABSTRACT

The migration of circulating leukocytes into the central nervous system (CNS) is a key driver of multiple sclerosis (MS) pathogenesis. The monoclonal antibody natalizumab proved that pharmaceutically obstructing this process is an effective therapeutic approach for treating relapsing-remitting MS (RRMS). Unfortunately, the clinical efficacy of natalizumab is somewhat offset by its incapacity to control the progressive forms of MS (PMS) and by life-threatening side effects in RRMS rising from the expression of its molecular target, very late antigen 4 (VLA4), on most immune cells and consequent impairment of CNS immunosurveillance. Here, we identified dual immunoglobulin domain containing cell adhesion molecule (DICAM) as a cell trafficking molecule preferentially expressed by T helper 17 (TH17)­polarized CD4+ T lymphocytes. We found that DICAM expression on circulating CD4+ T cells was increased in patients with active RRMS and PMS disease courses, and expression of DICAM ligands was increased on the blood-brain barrier endothelium upon inflammation and in MS lesions. Last, we demonstrated that pharmaceutically neutralizing DICAM reduced murine and human TH17 cell trafficking across the blood-brain barrier in vitro and in vivo, and alleviated disease symptoms in four distinct murine autoimmune encephalomyelitis models, including relapsing-remitting and progressive disease models. Collectively, our data highlight DICAM as a candidate therapeutic target to impede the migration of disease-inducing leukocytes into the CNS in both RRMS and PMS and suggest that blocking DICAM with a monoclonal antibody may be a promising therapeutic approach.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Animals , Blood-Brain Barrier/metabolism , Cell Adhesion Molecules/metabolism , Humans , Mice , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Natalizumab/metabolism , Natalizumab/pharmacology , Natalizumab/therapeutic use , Neuroinflammatory Diseases , T-Lymphocytes/metabolism , Th17 Cells
10.
Theranostics ; 11(15): 7130-7143, 2021.
Article in English | MEDLINE | ID: mdl-34158840

ABSTRACT

Rationale: First-line therapy for high-grade gliomas (HGGs) includes maximal safe surgical resection. The extent of resection predicts overall survival, but current neuroimaging approaches lack tumor specificity. The epidermal growth factor receptor (EGFR) is a highly expressed HGG biomarker. We evaluated the safety and feasibility of an anti-EGFR antibody, panitumuab-IRDye800, at subtherapeutic doses as an imaging agent for HGG. Methods: Eleven patients with contrast-enhancing HGGs were systemically infused with panitumumab-IRDye800 at a low (50 mg) or high (100 mg) dose 1-5 days before surgery. Near-infrared fluorescence imaging was performed intraoperatively and ex vivo, to identify the optimal tumor-to-background ratio by comparing mean fluorescence intensities of tumor and histologically uninvolved tissue. Fluorescence was correlated with preoperative T1 contrast, tumor size, EGFR expression and other biomarkers. Results: No adverse events were attributed to panitumumab-IRDye800. Tumor fragments as small as 5 mg could be detected ex vivo and detection threshold was dose dependent. In tissue sections, panitumumab-IRDye800 was highly sensitive (95%) and specific (96%) for pathology confirmed tumor containing tissue. Cellular delivery of panitumumab-IRDye800 was correlated to EGFR overexpression and compromised blood-brain barrier in HGG, while normal brain tissue showed minimal fluorescence. Intraoperative fluorescence improved optical contrast in tumor tissue within and beyond the T1 contrast-enhancing margin, with contrast-to-noise ratios of 9.5 ± 2.1 and 3.6 ± 1.1, respectively. Conclusions: Panitumumab-IRDye800 provided excellent tumor contrast and was safe at both doses. Smaller fragments of tumor could be detected at the 100 mg dose and thus more suitable for intraoperative imaging.


Subject(s)
Brain Neoplasms , Drug Delivery Systems , Glioma , Indoles/administration & dosage , Neoplasm Proteins/metabolism , Optical Imaging , Panitumumab/administration & dosage , Adult , Aged , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/metabolism , Brain Neoplasms/surgery , Disease-Free Survival , ErbB Receptors/metabolism , Female , Glioma/diagnostic imaging , Glioma/metabolism , Glioma/surgery , Humans , Intraoperative Care , Male , Middle Aged , Survival Rate
11.
Sci Rep ; 11(1): 5710, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707521

ABSTRACT

The prognosis for high-grade glioma (HGG) remains dismal and the extent of resection correlates with overall survival and progression free disease. Epidermal growth factor receptor (EGFR) is a biomarker heterogeneously expressed in HGG. We assessed the feasibility of detecting HGG using near-infrared fluorescent antibody targeting EGFR. Mice bearing orthotopic HGG xenografts with modest EGFR expression were imaged in vivo after systemic panitumumab-IRDye800 injection to assess its tumor-specific uptake macroscopically over 14 days, and microscopically ex vivo. EGFR immunohistochemical staining of 59 tumor specimens from 35 HGG patients was scored by pathologists and expression levels were compared to that of mouse xenografts. Intratumoral distribution of panitumumab-IRDye800 correlated with near-infrared fluorescence and EGFR expression. Fluorescence distinguished tumor cells with 90% specificity and 82.5% sensitivity. Target-to-background ratios peaked at 14 h post panitumumab-IRDye800 infusion, reaching 19.5 in vivo and 7.6 ex vivo, respectively. Equivalent or higher EGFR protein expression compared to the mouse xenografts was present in 77.1% HGG patients. Age, combined with IDH-wildtype cerebral tumor, was predictive of greater EGFR protein expression in human tumors. Tumor specific uptake of panitumumab-IRDye800 provided remarkable contrast and a flexible imaging window for fluorescence-guided identification of HGGs despite modest EGFR expression.


Subject(s)
ErbB Receptors/immunology , Fluorescent Antibody Technique , Glioma/diagnostic imaging , Glioma/pathology , Molecular Imaging , Adolescent , Adult , Aged , Animals , Biomarkers, Tumor/metabolism , Brain Neoplasms/diagnosis , Brain Neoplasms/pathology , Cell Line, Tumor , Child , Child, Preschool , Contrast Media/chemistry , Female , Humans , Indoles/pharmacokinetics , Indoles/pharmacology , Infant , Male , Mice , Middle Aged , Neoplasm Grading , Panitumumab/pharmacokinetics , Panitumumab/pharmacology , Tissue Distribution/drug effects , Xenograft Model Antitumor Assays , Young Adult
12.
Article in English | MEDLINE | ID: mdl-32788322

ABSTRACT

OBJECTIVE: To investigate the involvement of interleukin (IL)-26 in neuroinflammatory processes in multiple sclerosis (MS), in particular in blood-brain barrier (BBB) integrity. METHODS: Expression of IL-26 was measured in serum, CSF, in vitro differentiated T helper (TH) cell subsets, and postmortem brain tissue of patients with MS and controls by ELISA, quantitative PCR, and immunohistochemistry. Primary human and mouse BBB endothelial cells (ECs) were treated with IL-26 in vitro and assessed for BBB integrity. RNA sequencing was performed on IL-26-treated human BBB ECs. Myelin oligodendrocyte glycoprotein35-55 experimental autoimmune encephalomyelitis (EAE) mice were injected IP with IL-26. BBB leakage and immune cell infiltration were assessed in the CNS of these mice using immunohistochemistry and flow cytometry. RESULTS: IL-26 expression was induced in TH lymphocytes by TH17-inducing cytokines and was upregulated in the blood and CSF of patients with MS. CD4+IL-26+ T lymphocytes were found in perivascular infiltrates in MS brain lesions, and both receptor chains for IL-26 (IL-10R2 and IL-20R1) were detected on BBB ECs in vitro and in situ. In contrast to IL-17 and IL-22, IL-26 promoted integrity and reduced permeability of BBB ECs in vitro and in vivo. In EAE, IL-26 reduced disease severity and proinflammatory lymphocyte infiltration into the CNS, while increasing infiltration of Tregs. CONCLUSIONS: Our study demonstrates that although IL-26 is preferentially expressed by TH17 lymphocytes, it promotes BBB integrity in vitro and in vivo and is protective in chronic EAE, highlighting the functional diversity of cytokines produced by TH17 lymphocytes.


Subject(s)
Blood-Brain Barrier/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Interleukins/metabolism , Multiple Sclerosis/metabolism , Th17 Cells/metabolism , Animals , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Endothelium, Vascular/metabolism , Fetus , Humans , Interleukins/blood , Interleukins/cerebrospinal fluid , Interleukins/pharmacology , Mice , Multiple Sclerosis/blood , Multiple Sclerosis/cerebrospinal fluid
13.
J Clin Neurosci ; 78: 413-415, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32631721

ABSTRACT

Tenosynovial giant cell tumors (TGCTs) are benign neoplasms that arise from the synovium of tendon sheaths, bursae, and joints. We report a rare presentation of TGCT involving the suboccipital spine.


Subject(s)
Brain Neoplasms/pathology , Giant Cell Tumors/pathology , Synovial Membrane/pathology , Giant Cell Tumor of Tendon Sheath/pathology , Humans , Occipital Lobe/pathology , Spinal Neoplasms/pathology
14.
Cell Rep ; 30(4): 1129-1140.e5, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31995754

ABSTRACT

Plasma membrane damage and cell death during processes such as necroptosis and apoptosis result from cues originating intracellularly. However, death caused by pore-forming agents, like bacterial toxins or complement, is due to direct external injury to the plasma membrane. To prevent death, the plasma membrane has an intrinsic repair ability. Here, we found that repair triggered by pore-forming agents involved TMEM16F, a calcium-activated lipid scramblase also mutated in Scott's syndrome. Upon pore formation and the subsequent influx of intracellular calcium, TMEM16F induced rapid "lipid scrambling" in the plasma membrane. This response was accompanied by membrane blebbing, extracellular vesicle release, preserved membrane integrity, and increased cell viability. TMEM16F-deficient mice exhibited compromised control of infection by Listeria monocytogenes associated with a greater sensitivity of neutrophils to the pore-forming Listeria toxin listeriolysin O (LLO). Thus, the lipid scramblase TMEM16F is critical for plasma membrane repair after injury by pore-forming agents.


Subject(s)
Anoctamins/metabolism , Bacterial Toxins/toxicity , Cell Membrane/metabolism , Extracellular Vesicles/metabolism , Heat-Shock Proteins/toxicity , Hemolysin Proteins/toxicity , Phosphatidylserines/metabolism , Phospholipid Transfer Proteins/metabolism , Thymocytes/metabolism , Animals , Anoctamins/genetics , Calcium/metabolism , Cell Death/drug effects , Cell Death/genetics , Cell Membrane/drug effects , Extracellular Vesicles/drug effects , Listeria monocytogenes/metabolism , Listeria monocytogenes/pathogenicity , Liver/cytology , Liver/metabolism , Liver/microbiology , Liver/pathology , Membrane Lipids/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Scanning , Neutrophils/cytology , Neutrophils/drug effects , Neutrophils/microbiology , Neutrophils/pathology , Phospholipid Transfer Proteins/genetics , Spleen/cytology , Spleen/metabolism , Spleen/microbiology , Spleen/pathology , Thymocytes/drug effects , Thymocytes/ultrastructure
15.
J Neuroinflammation ; 16(1): 253, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31801576

ABSTRACT

BACKGROUND: Aneurysmal subarachnoid hemorrhage (SAH) is a catastrophic disease with devastating consequences, including a high mortality rate and severe disabilities among survivors. Inflammation is induced following SAH, but the exact role and phenotype of innate immune cells remain poorly characterized. We investigated the inflammatory components of the early brain injury in an animal model and in SAH patients. METHOD: SAH was induced through injection of blood in the subarachnoid space of C57Bl/6 J wild-type mice. Prospective blood collections were obtained at 12 h, days 1, 2, and 7 to evaluate the systemic inflammatory consequences of SAH by flow cytometry and enzyme-linked immunosorbent-assay (ELISA). Brains were collected, enzymatically digested, or fixed to characterize infiltrating inflammatory cells and neuronal death using flow cytometry and immunofluorescence. Phenotypic evaluation was performed at day 7 using the holding time and footprint tests. We then compared the identified inflammatory proteins to the profiles obtained from the plasma of 13 human SAH patients. RESULTS: Following SAH, systemic IL-6 levels increased rapidly, whereas IL-10 levels were reduced. Neutrophils were increased both in the brain and in the blood reflecting local and peripheral inflammation following SAH. More intracerebral pro-inflammatory monocytes were found at early time points. Astrocyte and microglia activation were also increased, and mice had severe motor deficits, which were associated with an increase in the percentage of caspase-3-positive apoptotic neurons. Similarly, we found that IL-6 levels in patients were rapidly increased following SAH. ICAM-1, bFGF, IL-7, IL-12p40, and MCP-4 variations over time were different between SAH patients with good versus bad outcomes. Moreover, high levels of Flt-1 and VEGF at admission were associated with worse outcomes. CONCLUSION: SAH induces an early intracerebral infiltration and peripheral activation of innate immune cells. Furthermore, microglia and astrocytic activation are present at later time points. Our human and mouse data illustrate that SAH is a systemic inflammatory disease and that immune cells represent potential therapeutic targets to help this population of patients in need of new treatments.


Subject(s)
Brain/immunology , Brain/pathology , Immunity, Innate/physiology , Subarachnoid Hemorrhage/immunology , Subarachnoid Hemorrhage/pathology , Animals , Brain/metabolism , Brain Injuries , Humans , Male , Mice , Mice, Inbred C57BL , Subarachnoid Hemorrhage/metabolism
16.
Sci Rep ; 9(1): 18897, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31827213

ABSTRACT

The mechanisms linking chronic inflammation of the gut (IBD) and increased colorectal cancer susceptibility are poorly understood. IBD risk is influenced by genetic factors, including the IBD5 locus (human 5q31), that harbors the IRF1 gene. A cause-to-effect relationship between chronic inflammation and colorectal cancer, and a possible role of IRF1 were studied in Irf1-/- mice in a model of colitis-associated colorectal cancer (CA-CRC) induced by azoxymethane and dextran sulfate. Loss of Irf1 causes hyper-susceptibility to CA-CRC, with early onset and increased number of tumors leading to rapid lethality. Transcript profiling (RNA-seq) and immunostaining of colons shows heightened inflammation and enhanced enterocyte proliferation in Irf1-/- mutants, prior to appearance of tumors. Considerable infiltration of leukocytes is seen in Irf1-/- colons at this early stage, and is composed primarily of proinflammatory Gr1+ Cd11b+ myeloid cells and other granulocytes, as well as CD4+ lymphoid cells. Differential susceptibility to CA-CRC of Irf1-/- vs. B6 controls is fully transferable through hematopoietic cells as observed in bone marrow chimera studies. Transcript signatures seen in Irf1-/- mice in response to AOM/DSS are enriched in clinical specimens from patients with IBD and with colorectal cancer. In addition, IRF1 expression in the colon is significantly decreased in late stage colorectal cancer (stages 3, 4) and is associated with poorer prognosis. This suggests that partial or complete loss of IRF1 expression alters the type, number, and function of immune cells in situ during chronic inflammation, possibly via the creation of a tumor-promoting environment.


Subject(s)
Colitis/metabolism , Colorectal Neoplasms/metabolism , Interferon Regulatory Factor-1/metabolism , Animals , Colitis/complications , Colitis/genetics , Colitis/pathology , Colon/metabolism , Colon/pathology , Colorectal Neoplasms/etiology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Disease Models, Animal , Genetic Predisposition to Disease , Interferon Regulatory Factor-1/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Mice, Knockout
17.
Infect Immun ; 88(1)2019 12 17.
Article in English | MEDLINE | ID: mdl-31636138

ABSTRACT

Salmonella is an intracellular bacterium found in the gastrointestinal tract of mammalian, avian, and reptilian hosts. Mouse models have been extensively used to model in vivo distinct aspects of human Salmonella infections and have led to the identification of several host susceptibility genes. We have investigated the susceptibility of Collaborative Cross strains to intravenous infection with Salmonella enterica serovar Typhimurium as a model of human systemic invasive infection. In this model, strain CC042/GeniUnc (CC042) mice displayed extreme susceptibility with very high bacterial loads and mortality. CC042 mice showed lower spleen weights and decreased splenocyte numbers before and after infection, affecting mostly CD8+ T cells, B cells, and all myeloid cell populations, compared with control C57BL/6J mice. CC042 mice also had lower thymus weights with a reduced total number of thymocytes and double-negative and double-positive (CD4+, CD8+) thymocytes compared to C57BL/6J mice. Analysis of bone marrow-resident hematopoietic progenitors showed a strong bias against lymphoid-primed multipotent progenitors. An F2 cross between CC042 and C57BL/6N mice identified two loci on chromosome 7 (Stsl6 and Stsl7) associated with differences in bacterial loads. In the Stsl7 region, CC042 carried a loss-of-function variant, unique to this strain, in the integrin alpha L (Itgal) gene, the causative role of which was confirmed by a quantitative complementation test. Notably, Itgal loss of function increased the susceptibility to S. Typhimurium in a (C57BL/6J × CC042)F1 mouse background but not in a C57BL/6J mouse inbred background. These results further emphasize the utility of the Collaborative Cross to identify new host genetic variants controlling susceptibility to infections and improve our understanding of the function of the Itgal gene.


Subject(s)
Bacteremia/genetics , CD11a Antigen/deficiency , Genetic Predisposition to Disease , Loss of Function Mutation , Salmonella Infections/genetics , Salmonella typhimurium/growth & development , Animals , Bacteremia/immunology , Bacteremia/pathology , Bacterial Load , Bone Marrow/pathology , Disease Models, Animal , Genes , Lymphocyte Subsets/immunology , Mice , Mice, Inbred C57BL , Salmonella Infections/immunology , Salmonella Infections/pathology , Serogroup , Spleen/pathology , Survival Analysis , Thymus Gland/pathology
18.
JAMA Neurol ; 76(10): 1253-1254, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31479102
19.
Nature ; 571(7766): 565-569, 2019 07.
Article in English | MEDLINE | ID: mdl-31316206

ABSTRACT

Parkinson's disease is a neurodegenerative disorder with motor symptoms linked to the loss of dopaminergic neurons in the substantia nigra compacta. Although the mechanisms that trigger the loss of dopaminergic neurons are unclear, mitochondrial dysfunction and inflammation are thought to have key roles1,2. An early-onset form of Parkinson's disease is associated with mutations in the PINK1 kinase and PRKN ubiquitin ligase genes3. PINK1 and Parkin (encoded by PRKN) are involved in the clearance of damaged mitochondria in cultured cells4, but recent evidence obtained using knockout and knockin mouse models have led to contradictory results regarding the contributions of PINK1 and Parkin to mitophagy in vivo5-8. It has previously been shown that PINK1 and Parkin have a key role in adaptive immunity by repressing presentation of mitochondrial antigens9, which suggests that autoimmune mechanisms participate in the aetiology of Parkinson's disease. Here we show that intestinal infection with Gram-negative bacteria in Pink1-/- mice engages mitochondrial antigen presentation and autoimmune mechanisms that elicit the establishment of cytotoxic mitochondria-specific CD8+ T cells in the periphery and in the brain. Notably, these mice show a sharp decrease in the density of dopaminergic axonal varicosities in the striatum and are affected by motor impairment that is reversed after treatment with L-DOPA. These data support the idea that PINK1 is a repressor of the immune system, and provide a pathophysiological model in which intestinal infection acts as a triggering event in Parkinson's disease, which highlights the relevance of the gut-brain axis in the disease10.


Subject(s)
Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/physiopathology , Intestines/microbiology , Parkinson Disease/genetics , Parkinson Disease/microbiology , Protein Kinases/deficiency , Protein Kinases/genetics , Animals , Antigen Presentation/immunology , Autoantigens/immunology , Axons/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Citrobacter rodentium/immunology , Citrobacter rodentium/pathogenicity , Disease Models, Animal , Dopaminergic Neurons/immunology , Dopaminergic Neurons/pathology , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/pathology , Female , Intestines/immunology , Intestines/pathology , Levodopa/therapeutic use , Male , Mice , Mitochondria/immunology , Mitochondria/pathology , Neostriatum/immunology , Neostriatum/microbiology , Neostriatum/pathology , Neostriatum/physiopathology , Parkinson Disease/drug therapy , Parkinson Disease/physiopathology , Protein Kinases/immunology , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/immunology
20.
Nature ; 571(7764): 205-210, 2019 07.
Article in English | MEDLINE | ID: mdl-31270459

ABSTRACT

The mammalian brain contains neurogenic niches that comprise neural stem cells and other cell types. Neurogenic niches become less functional with age, but how they change during ageing remains unclear. Here we perform single-cell RNA sequencing of young and old neurogenic niches in mice. The analysis of 14,685 single-cell transcriptomes reveals a decrease in activated neural stem cells, changes in endothelial cells and microglia, and an infiltration of T cells in old neurogenic niches. T cells in old brains are clonally expanded and are generally distinct from those in old blood, which suggests that they may experience specific antigens. T cells in old brains also express interferon-γ, and the subset of neural stem cells that has a high interferon response shows decreased proliferation in vivo. We find that T cells can inhibit the proliferation of neural stem cells in co-cultures and in vivo, in part by secreting interferon-γ. Our study reveals an interaction between T cells and neural stem cells in old brains, opening potential avenues through which to counteract age-related decline in brain function.


Subject(s)
Aging/physiology , Brain/cytology , Cell Movement , Neural Stem Cells/cytology , Neurogenesis , Single-Cell Analysis , Stem Cell Niche/physiology , T-Lymphocytes/cytology , Animals , Blood , Cell Proliferation , Clone Cells/cytology , Coculture Techniques , Endothelial Cells/cytology , Interferon-gamma/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/cytology , Sequence Analysis, RNA , Signal Transduction , T-Lymphocytes/metabolism , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...