Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Vet Res ; 54(1): 88, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37789451

ABSTRACT

Respiratory diseases are a health and economic concern for poultry production worldwide. Given global economic exchanges and migratory bird flyways, respiratory viruses are likely to emerge continuously in new territories. The primary aim of this study was to investigate the major pathogens involved in respiratory disease in Tunisian broiler poultry and their epidemiology. Between 2018 and 2020, broilers farms in northeastern Tunisia were monitored, and 39 clinically diseased flocks were sampled. Samples were screened for five viral and three bacterial respiratory pathogens using a panel of real-time PCR assays. The reemergence of H9N2 low pathogenic avian influenza virus (LPAIV) in commercial poultry was reported, and the Northern and Western African GI lineage strain was typed. The infectious bronchitis virus (IBV) GI-23 lineage and the avian metapneumovirus (aMPV) subtype B also were detected for the first time in broilers in Tunisia. H9N2 LPAIV was the most detected pathogen in the flocks tested, but rarely alone, as 15 of the 16 H9N2 positive flocks were co-infected. Except for infectious laryngotracheitis virus (ILTV), all of the targeted pathogens were detected, and in 61% of the respiratory disease cases, a combination of pathogens was identified. The major combinations were H9N2 + aMPV (8/39) and H9N2 + IBV (6/39), showing the high contribution of H9N2 LPAIV to the multifactorial respiratory diseases. This field survey provided evidence of the emergence of new respiratory viruses and the complexity of respiratory disease in Tunisia. A comprehensive and continuous surveillance strategy therefore is needed to better control respiratory pathogens in Tunisia.


Subject(s)
Coinfection , Infectious bronchitis virus , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Poultry Diseases , Respiratory Tract Infections , Animals , Chickens , Influenza in Birds/epidemiology , Coinfection/epidemiology , Coinfection/veterinary , Tunisia/epidemiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/veterinary , Antibodies, Viral , Poultry Diseases/epidemiology , Phylogeny
2.
Vaccine ; 41(1): 145-158, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36411134

ABSTRACT

In France during winter 2016-2017, 487 outbreaks of clade 2.3.4.4b H5N8 subtype high pathogenicity (HP) avian influenza A virus (AIV) infections were detected in poultry and captive birds. During this epizootic, HPAIV A/decoy duck/France/161105a/2016 (H5N8) was isolated and characterized in an experimental infection transmission model in conventional mule ducks. To investigate options to possibly protect such ducks against this HPAIV, three vaccines were evaluated in controlled conditions. The first experimental vaccine was derived from the hemagglutinin gene of another clade 2.3.4.4b A(H5N8) HPAIV. It was injected at three weeks of age, either alone (Vac1) or after a primer injection at day-old (Vac1 + boost). The second vaccine (Vac2) was a commercial bivalent adjuvanted vaccine containing an expressed hemagglutinin modified from a clade 2.3.2 A(H5N1) HPAIV. Vac2 was administered as a single injection at two weeks of age. The third experimental vaccine (Vac3) also incorporated a homologous 2.3.4.4b H5 HA gene and was administered as a single injection at three weeks of age. Ducks were challenged with HPAIV A/decoy duck/France/161105a/2016 (H5N8) at six weeks of age. Post-challenge virus excretion was monitored in vaccinated and control birds every 2-3 days for two weeks using real-time reverse-transcription polymerase chain reaction and serological analyses (haemagglutination inhibition test against H5N8, H5 ELISA and AIV ELISA) were performed. Vac1 abolished oropharyngeal and cloacal shedding to almost undetectable levels, whereas Vac3 abolished cloacal shedding only (while partially reducing respiratory shedding) and Vac2 only partly reduced the respiratory and intestinal excretion of the challenge virus. These results provided relevant insights in the immunogenicity of recombinant H5 vaccines in mule ducks, a rarely investigated hybrid between Pekin and Muscovy duck species that has played a critical role in the recent H5 HPAI epizootics in France.


Subject(s)
Ducks , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N8 Subtype , Influenza Vaccines , Influenza in Birds , Poultry Diseases , Animals , Equidae , Hemagglutinins , Poultry Diseases/prevention & control , Vaccines, Synthetic , Virulence
3.
Virus Res ; 323: 198999, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36379388

ABSTRACT

The antigenic characterization of IBDV, a virus that causes an immunosuppressive disease in young chickens, has been historically addressed using cross virus neutralization (VN) assay and antigen-capture enzyme-linked immunosorbent (AC-ELISA). However, VN assay has been usually carried out either in specific antibody negative embryonated eggs, for non-cell culture adapted strains, which is tedious, or on chicken embryo fibroblasts (CEF), which requires virus adaptation to cell culture. AC-ELISA has provided crucial information about IBDV antigenicity, but this information is limited to the epitopes included in the tested panel with a lack of information of overall antigenic view. The present work aimed at overcoming those technical limitations and providing an extensive antigenic landscape based on original cross VN assays employing primary chicken B cells, where no previous IBDV adaptation is required. Sixteen serotype 1 IBDV viruses, comprising both reference strains and documented antigenic variants were tested against eleven chicken post-infectious sera. The VN data were analysed by antigenic cartography, a method which enables reliable high-resolution quantitative and visual interpretation of large binding assay datasets. The resulting antigenic cartography revealed i) the existence of several antigenic clusters of IBDV, ii) high antigenic relatedness between some genetically unrelated viruses, iii) a highly variable contribution to global antigenicity of previously identified individual epitopes and iv) broad reactivity of chicken sera raised against antigenic variants. This study provides an overall view of IBDV antigenic diversity. Implementing this approach will be instrumental to follow the evolution of IBDV antigenicity and control the disease.

4.
Front Vet Sci ; 9: 978901, 2022.
Article in English | MEDLINE | ID: mdl-36172614

ABSTRACT

Infectious bursal disease virus (IBDV) is among the most relevant and widespread immunosuppressive agents, which can severely damage poultry farming by causing direct losses, predisposing the host to secondary diseases and reducing the efficacy of vaccination protocols against other infections. IBDV has thus been the object of intense control activities, largely based on routine vaccination. However, the need for protecting animals from the infection in the first period of the production cycle, when the bursa susceptibility is higher, clashes with the blanketing effect of maternally derived antibodies. To overcome this issue, other strategies have been developed besides live attenuated vaccines, including vector vaccines and immune complex (icx) ones. The present study aims to investigate, in field conditions, the efficacy of these approaches in preventing IBDV infection in laying chickens vaccinated with either live attenuated, vector or immune complex (icx) vaccines. For this purpose, a multicentric study involving 481 farms located in 11 European countries was organized and IBDV infection diagnosis and strain characterization was performed at 6 weeks of age using a molecular approach. Vaccine strains were commonly detected in flocks vaccinated with live or icx vaccines. However, a significantly higher number of field strains (characterized as very virulent IBDVs) was detected in flocks vaccinated with vector vaccines, suggesting their lower capability of preventing bursal colonization. Different from vector vaccines, live and icx ones have a marked bursal tropism. It can thus be speculated that vaccine virus replication in these sites could limit vvIBDV replication by direct competition or because of a more effective activation of innate immunity. Although such different behavior doesn't necessarily affect clinical protection, further studies should be performed to evaluate if vvIBDV replication could still be associated with subclinical losses and/or for viral circulation in a "vaccinated environment" could drive viral evolution and favor the emergence of vaccine-escape variants.

5.
Vaccines (Basel) ; 8(4)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081359

ABSTRACT

Newcastle Disease is one of the most important infectious poultry diseases worldwide and is associated with high morbidity, mortality, and economic loss. In several countries, vaccination is applied to prevent and control outbreaks; however, information on the ability of vaccines to reduce transmission of ND virus (NDV) is sparse. Here we quantified the transmission of velogenic NDV among 42-day-old broilers. Chickens were either vaccinated with a single dose of a vector vaccine expressing the F protein (rHVT-ND) at day-old in the presence of maternally derived antibodies or kept unvaccinated. Seeders were challenged 8 h before the co-mingling with the corresponding contacts from the same group. Infection was monitored by daily testing of cloacal and oro-nasal swabs with reverse transcription-real-time PCR and by serology. Vaccinated birds were completely protected against clinical disease and virus excretion was significantly reduced compared to the unvaccinated controls that all died during the experiment. The reproduction ratio, which is the average number of secondary infections caused by an infectious bird, was significantly lower in the vaccinated group (0.82 (95% CI 0.38-1.75)) than in the unvaccinated group (3.2 (95% CI 2.06-4.96)). Results of this study demonstrate the potential of rHVT-ND vaccine in prevention and control of ND outbreaks.

6.
Avian Dis ; 61(3): 378-386, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28957008

ABSTRACT

Newcastle disease (ND) is still a major poultry disease worldwide. Vaccination remains the principal method of controlling ND in endemic countries. Various vaccination strategies, including the use of recently developed recombinant vaccines, have been used to control it. Recombinant vaccines that use the herpesvirus of turkey (HVT) as a vector to express one of the key antigens of Newcastle disease virus (NDV) have been developed to overcome some of the drawbacks related to the use of conventional vaccines. HVT as a vector appears to have unique beneficial characteristics: it is extremely safe, it is not affected by the presence of maternally derived antibodies, and therefore can be applied in the hatchery either in ovo or to day-old chicks. Due to its persistence in the bird, the HVT vector can be expected to induce life-long immune stimulation. In the present study, the efficacy of an HVT-based vector vaccine expressing the F gene of NDV (rHVT-F) was tested against a velogenic genotype IV NDV challenge in commercial turkeys with high levels of maternal antibodies (8.7 ± 0.8 log2 hemagglutination inhibition titer). The birds were vaccinated on the day of hatch by the subcutaneous route. Development of a humoral immune response to vaccination was detectable from 4 weeks of age by ELISA. The challenge strain used represents recent NDV genotype IV field strains from Morocco. Challenge with this strain induced ND-specific clinical signs and stunting without subsequent mortality in the non-vaccinated birds, whereas the vaccinated turkey poults showed protection as early as 3 weeks of age based on lack of clinical signs, better body weight gain, and reduction of challenge virus shedding. This is the first reported efficacy study of an HVT-vectored ND vaccine against a velogenic NDV challenge in commercial turkeys.


Subject(s)
Herpesvirus 1, Meleagrid/immunology , Immunity, Innate , Newcastle Disease/prevention & control , Newcastle disease virus/immunology , Poultry Diseases/prevention & control , Viral Vaccines/immunology , Animals , Newcastle Disease/virology , Poultry Diseases/virology , Turkeys , Vaccines, Synthetic/immunology
7.
Poult Sci ; 94(9): 2088-93, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26217020

ABSTRACT

Several causes may induce change and atrophy in the bursa of Fabricius (BF). Databases on BF standards are available from published studies, however, updated references are needed to adjust the BF standards to present changes in highly specialized broiler genetic lines. The aim of this study was to evaluate BF-related measurements (weight and dimensions) under controlled conditions that would mimic field situations. Chickens were kept in isolation, thus avoiding exposure to disease agents by vaccination or field infections. This study was conducted using male Cobb 500 commercial broilers from the same hatch and source. Absence of disease was confirmed throughout the study. Despite the presence of individual variations, a minimum bursa-to-body weight ratio standard of 0.11 is proposed in broilers from 7 to 42 days of age.


Subject(s)
Bursa of Fabricius/anatomy & histology , Bursa of Fabricius/growth & development , Chickens/anatomy & histology , Chickens/growth & development , Animals , Body Weight , Male , Organ Size , Reference Values
9.
J Gen Virol ; 87(Pt 1): 209-216, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16361433

ABSTRACT

The purpose of this study was to compare the molecular epidemiology of infectious bursal disease virus (IBDV) segments A and B of 50 natural or vaccine IBDV strains that were isolated or produced between 1972 and 2002 in 17 countries from four continents, with phenotypes ranging from attenuated to very virulent (vv). These strains were subjected to sequence and phylogenetic analysis based on partial sequences of genome segments A and B. Although there is co-evolution of the two genome segments (70 % of strains kept the same genetic relatives in the segment A- and B-defined consensus trees), several strains (26 %) were identified with the incongruence length difference test as exhibiting a significantly different phylogenetic relationship depending on which segment was analysed. This suggested that natural reassortment could have occurred. One of the possible naturally occurring reassortant strains, which exhibited a segment A related to the vvIBDV cluster whereas its segment B was not, was thoroughly sequenced (coding sequence of both segments) and submitted to a standardized experimental characterization of its acute pathogenicity. This strain induced significantly less mortality than typical vvIBDVs; however, the mechanisms for this reduced pathogenicity remain unknown, as no significant difference in the bursal lesions, post-infectious antibody response or virus production in the bursa was observed in challenged chickens.


Subject(s)
Birnaviridae Infections/veterinary , Genome, Viral , Infectious bursal disease virus/pathogenicity , Poultry Diseases/virology , Reassortant Viruses/pathogenicity , Virulence/genetics , Animals , Birnaviridae Infections/virology , Chickens , Infectious bursal disease virus/classification , Infectious bursal disease virus/genetics , Infectious bursal disease virus/physiology , Molecular Sequence Data , Phylogeny , Poultry Diseases/epidemiology , Reassortant Viruses/genetics , Sequence Analysis, DNA
10.
Avian Pathol ; 33(4): 423-31, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15370040

ABSTRACT

The 99323 Egyptian isolate of infectious bursal disease (IBD) virus (IBDV) was identified during an international survey of acute IBD cases. Its unique antigenicity was characterized by a markedly reduced binding of neutralizing monoclonal antibodies 3, 4, 5, 6, 8 and 9 in an antigen-capture enzyme-linked immunosorbent assay. Nucleotide sequencing of the genome region encoding the VP2 major immunogenic domain in 99323 revealed amino acid changes occurring at positions critical for antigenicity, but phylogenetic analysis demonstrated that 99323 was related to typical, very virulent IBDV (e.g. isolate 89163). Protection experimentally afforded by an antigenically classical live IBD vaccine was investigated in specific pathogen free chickens challenged with 99323 or 89163. Both viruses were similarly controlled, as evaluated by clinical signs, growth retardation, bursa-to-body weight ratios and histological lesions of the bursa after challenge. These results document that an active antibody response to a classical live antigen may clinically control infection by an antigenically atypical very virulent IBDV.


Subject(s)
Antibodies, Monoclonal/metabolism , Birnaviridae Infections/veterinary , Infectious bursal disease virus/immunology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Vaccination/veterinary , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Base Sequence , Birnaviridae Infections/pathology , Birnaviridae Infections/prevention & control , Chickens , Egypt , Enzyme-Linked Immunosorbent Assay , Infectious bursal disease virus/genetics , Infectious bursal disease virus/pathogenicity , Molecular Sequence Data , Neutralization Tests , Phylogeny , Poultry Diseases/pathology , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Sequence Analysis, DNA , Species Specificity , Viral Structural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...