Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Inherit Metab Dis ; 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37402126

ABSTRACT

The autosomal recessive defect of aromatic L-amino acid decarboxylase (AADC) leads to a severe neurological disorder with manifestation in infancy due to a pronounced, combined deficiency of dopamine, serotonin and catecholamines. The success of conventional drug treatment is very limited, especially in patients with a severe phenotype. The development of an intracerebral AAV2-based gene delivery targeting the putamen or substantia nigra started more than 10 years ago. Recently, the putaminally-delivered construct, Eladocagene exuparvovec has been approved by the European Medicines Agency and by the British Medicines and Healthcare products Regulatory Agency. This now available gene therapy provides for the first time also for AADC deficiency (AADCD) a causal therapy, leading this disorder into a new therapeutic era. By using a standardized Delphi approach members of the International Working Group on Neurotransmitter related Disorders (iNTD) developed structural requirements and recommendations for the preparation, management and follow-up of AADC deficiency patients who undergo gene therapy. This statement underlines the necessity of a framework for a quality-assured application of AADCD gene therapy including Eladocagene exuparvovec. Treatment requires prehospital, inpatient and posthospital care by a multidisciplinary team in a specialized and qualified therapy center. Due to lack of data on long-term outcomes and the comparative efficacy of alternative stereotactic procedures and brain target sites, a structured follow-up plan and systematic documentation of outcomes in a suitable, industry-independent registry study are necessary.

2.
Eur J Pediatr ; 176(3): 395-405, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28093642

ABSTRACT

The need for performing clinical trials to develop well-studied and appropriate medicines for inherited neurometabolic disease patients faces ethical concerns mainly raising from four aspects: the diseases are rare; include young and very young patients; the neurological impairment may compromise the capability to provide 'consent'; and the genetic nature of the disease leads to further ethical implications. This work is intended to identify the ethical provisions applicable to clinical research involving these patients and to evaluate if these cover the ethical issues. Three searches have been performed on the European regulatory/legal framework, the literature and European Union-funded projects. The European legal framework offers a number of ethical provisions ruling the clinical research on paediatric, rare, inherited diseases with neurological symptoms. In the literature, relevant publications deal with informed consent, newborn genetic screenings, gene therapy and rights/interests of research participants. Additional information raised from European projects on sharing patients' data from different countries, the need to fill the gap of the regulatory framework and to improve information to stakeholders and patients/families. CONCLUSION: Several recommendations and guidelines on ethical aspects are applicable to the inherited neurometabolic disease research in Europe, even though they suffer from the lack of a common ethical approach. What is Known: • When planning and conducting clinical trials, sponsors and researchers know that clinical trials are to be performed according to well-established ethical rules, and patients should be aware about their rights. • In the cases of paediatric patients, vulnerable patients unable to provide consent, genetic diseases' further rules apply. What is New: • This work discusses which ethical rules apply to ensure protection of patient's rights if all the above-mentioned features coexist. • This work shows available data and information on how these rules have been applied.


Subject(s)
Biomedical Research/ethics , Clinical Trials as Topic/ethics , Informed Consent/legislation & jurisprudence , Metabolic Diseases , Nervous System Diseases , Rare Diseases , Child , Europe , European Union , Humans
3.
Nat Genet ; 41(7): 829-32, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19525956

ABSTRACT

Aicardi-Goutières syndrome is a mendelian mimic of congenital infection and also shows overlap with systemic lupus erythematosus at both a clinical and biochemical level. The recent identification of mutations in TREX1 and genes encoding the RNASEH2 complex and studies of the function of TREX1 in DNA metabolism have defined a previously unknown mechanism for the initiation of autoimmunity by interferon-stimulatory nucleic acid. Here we describe mutations in SAMHD1 as the cause of AGS at the AGS5 locus and present data to show that SAMHD1 may act as a negative regulator of the cell-intrinsic antiviral response.


Subject(s)
Brain Diseases, Metabolic, Inborn/genetics , Immunity, Innate , Monomeric GTP-Binding Proteins/genetics , Amino Acid Substitution , Brain Diseases, Metabolic, Inborn/immunology , Humans , Monomeric GTP-Binding Proteins/immunology , SAM Domain and HD Domain-Containing Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL
...