Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Brain Sci ; 14(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38790488

ABSTRACT

Virtual Reality Exposure Therapy (VRET), particularly immersive Virtual Reality Exposure Therapy (iVRET), has gained attraction as an innovative approach in exposure therapy (ET), notably for some anxiety disorders with a fear of contamination component, such as spider phobia (SP) and obsessive-compulsive disorder (OCD). This systematic work investigates iVRET's effectiveness in modulating disgust emotion-a shared aberrant feature across these disorders. Recent reviews have evaluated VRET's efficacy against in vivo ET. However, emerging evidence also highlights iVRET's potential in diminishing atypical disgust and related avoidance behaviors, expanding beyond traditional fear-focused outcomes. Our systematic synthesis, adhering to PRISMA guidelines, aims to fill this gap by assessing iVRET's efficacy in regulating disgust emotion within both clinical and at-risk populations, identified through standardized questionnaires and subjective disgust ratings. This research analyzes data from eight studies on clinical populations and five on healthy populations, offering an insight into iVRET's potential to mitigate the aberrant disgust response, a common transdiagnostic feature in varied psychopathologies. The findings support iVRET's clinical relevance in disgust management, providing evidence for a broader therapeutic application of iVRET and pointing out the need for more focused and complete investigations in this emergent field.

2.
Transl Psychiatry ; 14(1): 140, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461283

ABSTRACT

Machine learning (ML) has emerged as a promising tool to enhance suicidal prediction. However, as many large-sample studies mixed psychiatric and non-psychiatric populations, a formal psychiatric diagnosis emerged as a strong predictor of suicidal risk, overshadowing more subtle risk factors specific to distinct populations. To overcome this limitation, we conducted a systematic review of ML studies evaluating suicidal behaviors exclusively in psychiatric clinical populations. A systematic literature search was performed from inception through November 17, 2022 on PubMed, EMBASE, and Scopus following the PRISMA guidelines. Original research using ML techniques to assess the risk of suicide or predict suicide attempts in the psychiatric population were included. An assessment for bias risk was performed using the transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) guidelines. About 1032 studies were retrieved, and 81 satisfied the inclusion criteria and were included for qualitative synthesis. Clinical and demographic features were the most frequently employed and random forest, support vector machine, and convolutional neural network performed better in terms of accuracy than other algorithms when directly compared. Despite heterogeneity in procedures, most studies reported an accuracy of 70% or greater based on features such as previous attempts, severity of the disorder, and pharmacological treatments. Although the evidence reported is promising, ML algorithms for suicidal prediction still present limitations, including the lack of neurobiological and imaging data and the lack of external validation samples. Overcoming these issues may lead to the development of models to adopt in clinical practice. Further research is warranted to boost a field that holds the potential to critically impact suicide mortality.


Subject(s)
Suicidal Ideation , Suicide, Attempted , Humans , Algorithms , Machine Learning , Risk Factors
3.
Sci Adv ; 10(10): eadk6840, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457501

ABSTRACT

Emotion and perception are tightly intertwined, as affective experiences often arise from the appraisal of sensory information. Nonetheless, whether the brain encodes emotional instances using a sensory-specific code or in a more abstract manner is unclear. Here, we answer this question by measuring the association between emotion ratings collected during a unisensory or multisensory presentation of a full-length movie and brain activity recorded in typically developed, congenitally blind and congenitally deaf participants. Emotional instances are encoded in a vast network encompassing sensory, prefrontal, and temporal cortices. Within this network, the ventromedial prefrontal cortex stores a categorical representation of emotion independent of modality and previous sensory experience, and the posterior superior temporal cortex maps the valence dimension using an abstract code. Sensory experience more than modality affects how the brain organizes emotional information outside supramodal regions, suggesting the existence of a scaffold for the representation of emotional states where sensory inputs during development shape its functioning.


Subject(s)
Brain , Emotions , Humans , Photic Stimulation , Prefrontal Cortex , Brain Mapping/methods , Magnetic Resonance Imaging
4.
J Clin Med ; 13(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38337568

ABSTRACT

Background: Assessing functional outcomes in Severe Closed Head Injury (SCHI) is complex due to brain parenchymal changes. This study examines the Ventricles to Intracranial Volume Ratio (VBR) as a metric for these changes and its correlation with behavioral scales. Methods: Thirty-one SCHI patients were included. VBR was derived from CT scans at 3, 30, and 90 days post-injury and compared with Levels of Cognitive Functioning (LCF), Disability Rating Scale (DRS), and Early Rehabilitation Barthel Index (ERBI) assessments at 30 and 90 days. Results: Ten patients were excluded post-decompressive craniectomy or ventriculoperitoneal shunt. Findings indicated a VBR decrease at 3 days, suggesting acute phase compression, followed by an increase from 30 to 90 days, indicative of post-acute brain atrophy. VBR correlated positively with the Marshall score in the initial 72 h, positioning it as an early indicator of subsequent brain atrophy. Nevertheless, in contrast to the Marshall score, VBR had stronger associations with DRS and ERBI at 90 days. Conclusions: VBR, alongside behavioral assessments, presents a robust framework for evaluating SCHI progression. It supports early functional outcome correlations informing therapeutic approaches. VBR's reliability underscores its utility in neurorehabilitation for ongoing SCHI assessment and aiding clinical decisions.

5.
Affect Sci ; 4(4): 770-780, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38156253

ABSTRACT

A wealth of literature suggests the existence of sex differences in how emotions are experienced, recognized, expressed, and regulated. However, to what extent these differences result from the put in place of stereotypes and social rules is still a matter of debate. Literature is an essential cultural institution, a transposition of the social life of people but also of their intimate affective experiences, which can serve to address questions of psychological relevance. Here, we created a large corpus of literary fiction enriched by authors' metadata to measure the extent to which culture influences how men and women write about emotion. Our results show that even though before the twenty-first century and across 116 countries women more than men have written about affect, starting from 2000, this difference has diminished substantially. Also, in the past, women's narratives were more positively laden and less arousing. While the difference in arousal is ubiquitous and still present nowadays, sex differences in valence vary as a function of culture and have dissolved in recent years. Altogether, these findings suggest that historic evolution is associated with men and women writing similarly about emotions and reveal a sizable impact of culture on the affective characteristics of the lexicon. Supplementary Information: The online version contains supplementary material available at 10.1007/s42761-023-00219-9.

6.
Sci Rep ; 13(1): 8110, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37208405

ABSTRACT

Narratives are paradigmatic examples of natural language, where nouns represent a proxy of information. Functional magnetic resonance imaging (fMRI) studies revealed the recruitment of temporal cortices during noun processing and the existence of a noun-specific network at rest. Yet, it is unclear whether, in narratives, changes in noun density influence the brain functional connectivity, so that the coupling between regions correlates with information load. We acquired fMRI activity in healthy individuals listening to a narrative with noun density changing over time and measured whole-network and node-specific degree and betweenness centrality. Network measures were correlated with information magnitude with a time-varying approach. Noun density correlated positively with the across-regions average number of connections and negatively with the average betweenness centrality, suggesting the pruning of peripheral connections as information decreased. Locally, the degree of the bilateral anterior superior temporal sulcus (aSTS) was positively associated with nouns. Importantly, aSTS connectivity cannot be explained by changes in other parts of speech (e.g., verbs) or syllable density. Our results indicate that the brain recalibrates its global connectivity as a function of the information conveyed by nouns in natural language. Also, using naturalistic stimulation and network metrics, we corroborate the role of aSTS in noun processing.


Subject(s)
Brain Mapping , Brain , Humans , Brain Mapping/methods , Brain/diagnostic imaging , Brain/physiology , Language , Temporal Lobe/physiology , Speech , Magnetic Resonance Imaging
7.
Nat Hum Behav ; 7(3): 397-410, 2023 03.
Article in English | MEDLINE | ID: mdl-36646839

ABSTRACT

The processing of multisensory information is based upon the capacity of brain regions, such as the superior temporal cortex, to combine information across modalities. However, it is still unclear whether the representation of coherent auditory and visual events requires any prior audiovisual experience to develop and function. Here we measured brain synchronization during the presentation of an audiovisual, audio-only or video-only version of the same narrative in distinct groups of sensory-deprived (congenitally blind and deaf) and typically developed individuals. Intersubject correlation analysis revealed that the superior temporal cortex was synchronized across auditory and visual conditions, even in sensory-deprived individuals who lack any audiovisual experience. This synchronization was primarily mediated by low-level perceptual features, and relied on a similar modality-independent topographical organization of slow temporal dynamics. The human superior temporal cortex is naturally endowed with a functional scaffolding to yield a common representation across multisensory events.


Subject(s)
Auditory Perception , Visual Perception , Humans , Acoustic Stimulation , Temporal Lobe , Brain
8.
Cogn Emot ; 37(1): 1-17, 2023 02.
Article in English | MEDLINE | ID: mdl-36300588

ABSTRACT

Vocal bursts are non-linguistic affectively-laden sounds with a crucial function in human communication, yet their affective structure is still debated. Studies showed that ratings of valence and arousal follow a V-shaped relationship in several kinds of stimuli: high arousal ratings are more likely to go on a par with very negative or very positive valence. Across two studies, we asked participants to listen to 1,008 vocal bursts and judge both how they felt when listening to the sound (i.e. core affect condition), and how the speaker felt when producing it (i.e. perception of affective quality condition). We show that a V-shaped fit outperforms a linear model in explaining the valence-arousal relationship across conditions and studies, even after equating the number of exemplars across emotion categories. Also, although subjective experience can be significantly predicted using affective quality ratings, core affect scores are significantly lower in arousal, less extreme in valence, more variable between individuals, and less reproducible between studies. Nonetheless, stimuli rated with opposite valence between conditions range from 11% (study 1) to 17% (study 2). Lastly, we demonstrate that ambiguity in valence (i.e. high between-participants variability) explains violations of the V-shape and relates to higher arousal.


Subject(s)
Emotions , Voice , Humans , Auditory Perception , Arousal , Communication , Affect
9.
Front Psychol ; 13: 798871, 2022.
Article in English | MEDLINE | ID: mdl-35422741

ABSTRACT

Humans naturally perceive visual patterns in a global manner and are remarkably capable of extracting object shapes based on properties such as proximity, closure, symmetry, and good continuation. Notwithstanding the role of these properties in perceptual grouping, studies highlighted differences in disembedding performance across individuals, which are summarized by the field dependence dimension. Evidence suggests that age and educational attainment explain part of this variability, whereas the role of sex is still highly debated. Also, which stimulus features primarily influence inter-individual variations in perceptual grouping has still to be fully determined. Building upon these premises, we assessed the role of age, education level, and sex on performance at the Leuven Embedded Figure Test-a proxy of disembedding abilities-in 391 cisgender individuals. We also investigated to what extent shape symmetry, closure, complexity, and continuation relate to task accuracy. Overall, target asymmetry, closure, and good continuation with the embedding context increase task difficulty. Simpler shapes are more difficult to detect than those with more lines, yet context complexity impairs the recognition of complex targets (i.e., those with 6 lines or more) to a greater extent. Concerning demographic data, we confirm that age and educational attainment are significantly associated with disembedding abilities and reveal a perceptual advantage in males. In summary, our study further highlights the role of shape properties in disembedding performance and unveils sex differences not reported so far.

10.
Soc Cogn Affect Neurosci ; 17(5): 461-469, 2022 05 05.
Article in English | MEDLINE | ID: mdl-34673987

ABSTRACT

In everyday life, the stream of affect results from the interaction between past experiences, expectations and the unfolding of events. How the brain represents the relationship between time and affect has been hardly explored, as it requires modeling the complexity of everyday life in the laboratory setting. Movies condense into hours a multitude of emotional responses, synchronized across subjects and characterized by temporal dynamics alike real-world experiences. Here, we use time-varying intersubject brain synchronization and real-time behavioral reports to test whether connectivity dynamics track changes in affect during movie watching. The results show that polarity and intensity of experiences relate to the connectivity of the default mode and control networks and converge in the right temporoparietal cortex. We validate these results in two experiments including four independent samples, two movies and alternative analysis workflows. Finally, we reveal chronotopic connectivity maps within the temporoparietal and prefrontal cortex, where adjacent areas preferentially encode affect at specific timescales.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods , Cerebral Cortex/physiology , Humans , Magnetic Resonance Imaging/methods , Motion Pictures , Nerve Net/diagnostic imaging , Nerve Net/physiology
11.
J Cogn Neurosci ; 33(11): 2342-2356, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34618906

ABSTRACT

Emotion self-regulation relies both on cognitive and behavioral strategies implemented to modulate the subjective experience and/or the behavioral expression of a given emotion. Although it is known that a network encompassing fronto-cingulate and parietal brain areas is engaged during successful emotion regulation, the functional mechanisms underlying failures in emotion suppression (ES) are still unclear. In order to investigate this issue, we analyzed video and high-density EEG recordings of 20 healthy adult participants during an ES and a free expression task performed on two consecutive days. Changes in facial expression during ES, but not free expression, were preceded by local increases in sleep-like activity (1-4 Hz) in brain areas responsible for emotional suppression, including bilateral anterior insula and anterior cingulate cortex, and in right middle/inferior frontal gyrus (p < .05, corrected). Moreover, shorter sleep duration the night before the ES experiment correlated with the number of behavioral errors (p = .03) and tended to be associated with higher frontal sleep-like activity during ES failures (p = .09). These results indicate that local sleep-like activity may represent the cause of ES failures in humans and may offer a functional explanation for previous observations linking lack of sleep, changes in frontal activity, and emotional dysregulation.


Subject(s)
Emotional Regulation , Adult , Brain/diagnostic imaging , Brain Mapping , Emotions , Humans , Magnetic Resonance Imaging , Sleep
12.
Neuroimage ; 244: 118574, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34508897

ABSTRACT

Functional Quantitative Susceptibility Mapping (fQSM) allows for the quantitative measurement of time-varying magnetic susceptibility across cortical and subcortical brain structures with a potentially higher spatial specificity than conventional fMRI. While the usefulness of fQSM with General Linear Model and "On/Off" paradigms has been assessed, little is known about the potential applications and limitations of this technique in more sophisticated experimental paradigms and analyses, such as those currently used in modern neuroimaging. To thoroughly characterize fQSM activations, here we used 7T MRI, tonotopic mapping, as well as univariate (i.e., GLM and population Receptive Field) and multivariate (Representational Similarity Analysis; RSA) analyses. Although fQSM detected less tone-responsive voxels than fMRI, they were more consistently localized in gray matter. Also, the majority of active gray matter voxels exhibited negative fQSM response, signaling the expected oxyhemoglobin increase, whereas positive fQSM activations were mainly in white matter. Though fMRI- and fQSM-based tonotopic maps were overall comparable, the representation of frequency tunings in tone-sensitive regions was significantly more balanced for fQSM. Lastly, RSA revealed that frequency information from the auditory cortex could be successfully retrieved by using either methods. Overall, fQSM produces complementary results to conventional fMRI, as it captures small-scale variations in the activation pattern which inform multivariate measures. Although positive fQSM responses deserve further investigation, they do not impair the interpretation of contrasts of interest. The quantitative nature of fQSM, its spatial specificity and the possibility to simultaneously acquire canonical fMRI support the use of this technique for longitudinal and multicentric studies and pre-surgical mapping.


Subject(s)
Magnetic Resonance Imaging/methods , Neuroimaging/methods , Adult , Auditory Cortex/diagnostic imaging , Brain/diagnostic imaging , Contrast Media , Female , Gray Matter/diagnostic imaging , Humans , Linear Models , Male , White Matter/diagnostic imaging
13.
Eur J Neurosci ; 53(2): 357-361, 2021 01.
Article in English | MEDLINE | ID: mdl-32852863

ABSTRACT

In neuroimaging studies, small sample sizes and the resultant reduced statistical power to detect effects that are not large, combined with inadequate analytic choices, concur to produce inflated or false-positive findings. To mitigate these issues, researchers often restrict analyses to specific brain areas, using the region of interest (ROI) approach. Crucially, ROI analysis assumes the a priori justified definition of the target region. Nonetheless, reports often lack details about where in the timeline, ranging from study conception to the data analysis and interpretation of findings, were ROIs selected. Frequently, the rationale for ROI selection is vague or inadequately founded on the existing literature. These shortcomings have important implications for ROI-based studies, augmenting the risk that observed effects are inflated or even false positives. Tools like preregistration and registered reports could address this problem, ensuring the validity of ROI-based studies. The benefits could be enhanced by additional practices such as selection of ROIs using quantitative methods (i.e., meta-analysis) and the sharing of whole-brain unthresholded maps of effect size, as well as of binary ROIs, in publicly accessible repositories.


Subject(s)
Brain Mapping , Neuroimaging , Brain/diagnostic imaging
14.
J Neurophysiol ; 124(6): 1560-1570, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33052726

ABSTRACT

Object recognition relies on different transformations of the retinal input, carried out by the visual system, that range from local contrast to object shape and category. While some of those transformations are thought to occur at specific stages of the visual hierarchy, the features they represent are correlated (e.g., object shape and identity) and selectivity for the same feature overlaps in many brain regions. This may be explained either by collinearity across representations or may instead reflect the coding of multiple dimensions by the same cortical population. Moreover, orthogonal and shared components may differently impact distinctive stages of the visual hierarchy. We recorded functional MRI activity while participants passively attended to object images and employed a statistical approach that partitioned orthogonal and shared object representations to reveal their relative impact on brain processing. Orthogonal shape representations (silhouette, curvature, and medial axis) independently explained distinct and overlapping clusters of selectivity in the occitotemporal and parietal cortex. Moreover, we show that the relevance of shared representations linearly increases moving from posterior to anterior regions. These results indicate that the visual cortex encodes shared relations between different features in a topographic fashion and that object shape is encoded along different dimensions, each representing orthogonal features.NEW & NOTEWORTHY There are several possible ways of characterizing the shape of an object. Which shape description better describes our brain responses while we passively perceive objects? Here, we employed three competing shape models to explain brain representations when viewing real objects. We found that object shape is encoded in a multidimensional fashion and thus defined by the interaction of multiple features.


Subject(s)
Occipital Lobe/physiology , Pattern Recognition, Visual/physiology , Temporal Lobe/physiology , Adult , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Models, Neurological , Visual Cortex/physiology , Visual Pathways/physiology , Young Adult
16.
Nature ; 582(7810): 84-88, 2020 06.
Article in English | MEDLINE | ID: mdl-32483374

ABSTRACT

Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses1. The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data. This flexibility resulted in sizeable variation in the results of hypothesis tests, even for teams whose statistical maps were highly correlated at intermediate stages of the analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Notably, a meta-analytical approach that aggregated information across teams yielded a significant consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset2-5. Our findings show that analytical flexibility can have substantial effects on scientific conclusions, and identify factors that may be related to variability in the analysis of functional magnetic resonance imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for performing and reporting multiple analyses of the same data. Potential approaches that could be used to mitigate issues related to analytical variability are discussed.


Subject(s)
Data Analysis , Data Science/methods , Data Science/standards , Datasets as Topic , Functional Neuroimaging , Magnetic Resonance Imaging , Research Personnel/organization & administration , Brain/diagnostic imaging , Brain/physiology , Datasets as Topic/statistics & numerical data , Female , Humans , Logistic Models , Male , Meta-Analysis as Topic , Models, Neurological , Reproducibility of Results , Research Personnel/standards , Software
17.
Brain Cogn ; 139: 105517, 2020 03.
Article in English | MEDLINE | ID: mdl-31945602

ABSTRACT

Transcendental Meditation (TM) is defined as a mental process of transcending using a silent mantra. Previous work showed that relatively brief period of TM practice leads to decreases in stress and anxiety. However, whether these changes are subserved by specific morpho-functional brain modifications (as observed in other meditation techniques) is still unclear. Using a longitudinal design, we combined psychometric questionnaires, structural and resting-state functional magnetic resonance imaging (RS-fMRI) to investigate the potential brain modifications underlying the psychological effects of TM. The final sample included 19 naïve subjects instructed to complete two daily 20-min TM sessions, and 15 volunteers in the control group. Both groups were evaluated at recruitment (T0) and after 3 months (T1). At T1, only meditators showed a decrease in perceived anxiety and stress (t(18) = 2.53, p = 0.02), which correlated negatively with T1-T0 changes in functional connectivity among posterior cingulate cortex (PCC), precuneus and left superior parietal lobule. Additionally, TM practice was associated with increased connectivity between PCC and right insula, likely reflecting changes in interoceptive awareness. No structural changes were observed in meditators or control subjects. These preliminary findings indicate that beneficial effects of TM may be mediated by functional brain changes that take place after a short practice period of 3 months.


Subject(s)
Anxiety/therapy , Brain/diagnostic imaging , Meditation/methods , Stress, Psychological/therapy , Adult , Anxiety/diagnostic imaging , Brain Mapping , Cerebral Cortex/diagnostic imaging , Female , Functional Neuroimaging , Gyrus Cinguli/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Parietal Lobe/diagnostic imaging , Psychometrics , Stress, Psychological/diagnostic imaging , Surveys and Questionnaires , Young Adult
18.
Nat Commun ; 10(1): 5568, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31804504

ABSTRACT

Humans use emotions to decipher complex cascades of internal events. However, which mechanisms link descriptions of affective states to brain activity is unclear, with evidence supporting either local or distributed processing. A biologically favorable alternative is provided by the notion of gradient, which postulates the isomorphism between functional representations of stimulus features and cortical distance. Here, we use fMRI activity evoked by an emotionally charged movie and continuous ratings of the perceived emotion intensity to reveal the topographic organization of affective states. Results show that three orthogonal and spatially overlapping gradients encode the polarity, complexity and intensity of emotional experiences in right temporo-parietal territories. The spatial arrangement of these gradients allows the brain to map a variety of affective states within a single patch of cortex. As this organization resembles how sensory regions represent psychophysical properties (e.g., retinotopy), we propose emotionotopy as a principle of emotion coding.


Subject(s)
Attention/physiology , Brain/physiology , Emotions , Parietal Lobe/physiology , Adult , Brain/anatomy & histology , Brain/diagnostic imaging , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Parietal Lobe/anatomy & histology , Parietal Lobe/diagnostic imaging , Photic Stimulation/methods , Young Adult
19.
Neural Plast ; 2019: 6874805, 2019.
Article in English | MEDLINE | ID: mdl-31281345

ABSTRACT

Vitamin B12, folate, and homocysteine are implicated in pivotal neurodegenerative mechanisms and partake in elders' mental decline. Findings on the association between vitamin-related biochemistry and cognitive abilities suggest that the structural and functional properties of the brain may represent an intermediate biomarker linking vitamin concentrations to cognition. Despite this, no previous study directly investigated whether vitamin B12, folate, and homocysteine levels are sufficient to explain individual neuropsychological profiles or, alternatively, whether the activity of brain regions modulated by these compounds better predicts cognition in elders. Here, we measured the relationship between vitamin blood concentrations, scores at seventeen neuropsychological tests, and brain activity of sixty-five elders spanning from normal to Mild Cognitive Impairment. We then evaluated whether task-related brain responses represent an intermediate phenotype, providing a better prediction of subjects' neuropsychological scores, as compared to the one obtained considering blood biochemistry only. We found that the hemodynamic activity of the right dorsal anterior cingulate cortex was positively associated (p value < 0.05 cluster corrected) with vitamin B12 concentrations, suggesting that elders with higher B12 levels had a more pronounced recruitment of this salience network region. Crucially, the activity of this area significantly predicted subjects' visual search and attention abilities (p value = 0.0023), whereas B12 levels per se failed to do so. Our results demonstrate that the relationship between blood biochemistry and elders' cognitive abilities is revealed when brain activity is included into the equation, thus highlighting the role of brain imaging as intermediate phenotype.


Subject(s)
Brain/diagnostic imaging , Cognition/physiology , Cognitive Dysfunction/blood , Cognitive Dysfunction/diagnostic imaging , Hemodynamics/physiology , Vitamin B 12/blood , Aged , Aged, 80 and over , Brain/metabolism , Cognitive Dysfunction/psychology , Cohort Studies , Female , Humans , Longitudinal Studies , Male , Phenotype
20.
Case Rep Neurol Med ; 2019: 9360542, 2019.
Article in English | MEDLINE | ID: mdl-31223509

ABSTRACT

Carbon monoxide (CO) poisoning is a leading cause of intentional and unintentional poisoning worldwide, associated with mortality and severe morbidity. Some survivors of CO poisoning develop, after a lucid interval, a potentially permanent encephalopathy in the form of cognitive impairment and movement disorders, such as Parkinsonism. One of the most frequent neuroimaging findings is a cerebral white matter damage, but so far its precise cause and specific therapy are still debated. We here report the case of a 33-year-old woman with severe carbon monoxide poisoning who, after a period of lucid interval, presented symptoms of declining motor and cognitive functions. She was treated with 40 sessions of Hyperbaric Oxygen Therapy (HBOT). The therapeutic use of oxygen at supraphysiological pressures might either increase systemic oxidative stress or cause an overproduction of oxygen free radicals as drawbacks. Concurrent use of antioxidants and anti-inflammatory drugs may prevent the side effects of oxygen therapy at supraphysiological pressure due to oxidative stress. For this reason, the patient was also treated with high-dose N-Acetylcysteine and glucocorticoids. Here, we describe the longitudinal monitoring of patient's cognitive abilities and leukoencephalopathy associated with her positive clinical outcome.

SELECTION OF CITATIONS
SEARCH DETAIL
...