Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Parasit Vectors ; 17(1): 10, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178249

ABSTRACT

BACKGROUND: Insecticide resistance is reducing the efficacy of vector control interventions, consequently threatening efforts to control vector-borne diseases, including malaria. Investigating the prevalence of molecular markers of resistance is a useful tool for monitoring the spread of insecticide resistance in disease vectors. The Bijagós Archipelago (Bijagós) in Guinea-Bissau is a region of stable malaria transmission where insecticide-treated nets are the mainstay for malaria control. However, the prevalence of molecular markers of insecticide resistance in malaria vectors is not well understood. METHODS: A total of 214 Anopheles mosquitoes were analysed from 13 islands across the Bijagós. These mosquitoes were collected using CDC light traps in November 2019, during the peak malaria transmission season. High-throughput multiplex amplicon sequencing was used to investigate the prevalence of 17 different molecular markers associated with insecticide resistance in four genes: vgsc, rdl, ace1 and gste2. RESULTS: Of the 17 screened mutations, four were identified in mosquitoes from the Bijagós: vgsc L995F (12.2%), N1570Y (6.2%) and A1746S (0.7%) and rdl A269G (1.1%). This study is the first to report the L995F knock-down resistance (kdr)-west allele in Anopheles melas on the Archipelago. An additional eight non-synonymous single-nucleotide polymorphisms were identified across the four genes which have not been described previously. The prevalences of the vgsc L995F and N1570Y mutations were higher on Bubaque Island than on the other islands in this study; Bubaque is the most populous island in the archipelago, with the greatest population mobility and connection to continental Guinea-Bissau. CONCLUSIONS: This study provides the first surveillance data for genetic markers present in malaria vectors from islands across the Bijagós Archipelago. Overall prevalence of insecticide resistance mutations was found to be low. However, the identification of the vgsc L995F and N1570Y mutations associated with pyrethroid resistance warrants further monitoring. This is particularly important as the mainstay of malaria control on the islands is the use of pyrethroid insecticide-treated nets.


Subject(s)
Anopheles , Insecticides , Malaria , Pyrethrins , Animals , Anopheles/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/genetics , Pyrethrins/pharmacology , Genomics , Mutation
2.
Parasit Vectors ; 16(1): 236, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37454212

ABSTRACT

BACKGROUND: As the control of malaria remains heavily dependent on vector management interventions, it is important to understand the impact of these on mosquito populations. Age-grading is a valuable tool for this; however, logistical challenges in remote, resource-poor areas make current methodologies difficult to incorporate into clinical trials and routine surveillance. Our aim was to validate a methodology that could be easily implemented in such settings. Using dried mosquito specimens instead of freshly killed ones, we validated the commonly used ovarian tracheation technique for assessing population age structure. METHODS: Laboratory-reared Anopheles coluzzii mosquitoes with known parity status were dry preserved in silica gel for up to 12 weeks and rehydrated prior to parity assessment. The results were compared to parity results for freshly killed mosquitoes from the same colony. Preserved, field-caught Anopheles gambiae sensu lato (s.l.) from Guinea-Bissau were assessed by three different assessors blinded to each other's scores. An overall index of agreement was calculated using inter-rater reliability of all assessor pairings. The impact of preservation time was investigated using a one-way ANOVA to look for differences in assessor agreement over three time periods. RESULTS: The parity status was correctly identified for 90% of dry preserved and rehydrated insectary-reared An. coluzzii and for 98% of freshly killed insectary-reared An. coluzzii. The inter-rater reliability was highest (0.94) for freshly killed An. coluzzii. The results for all time points showed excellent strength of agreement between assessors. For field-caught An. gambiae s.l., the overall index of agreement between all three assessors was 0.86 (95% confidence interval 0.78-0.93), indicating almost perfect agreement. There was no significant difference between assessor agreement between time frames. CONCLUSIONS: Dry preserving and rehydrating Anopheles mosquitoes provides an alternative to using freshly killed mosquitoes to assess the efficacy of a control intervention in remote settings where it is logistically difficult to dissect fresh specimens. This method also provides the flexibility required for parity assessment to be done on larger scales over bigger areas.


Subject(s)
Anopheles , Animals , Fluid Therapy , Mosquito Vectors , Reproducibility of Results
3.
J R Soc Interface ; 20(201): 20220794, 2023 04.
Article in English | MEDLINE | ID: mdl-37015266

ABSTRACT

Rural houses in sub-Saharan Africa are typically hot and allow malaria mosquitoes inside. We assessed whether passive or active ventilation can reduce house entry of malaria mosquitoes and cool a bedroom at night in rural Gambia. Two identical experimental houses were used: one ventilated and one unventilated (control). We evaluated the impact of (i) passive ventilation (solar chimney) and (ii) active ventilation (ceiling fan) on the number of mosquitoes collected indoors and environmental parameters (temperature, humidity, CO2, evaporation). Although the solar chimney did not reduce entry of Anopheles gambiae sensu lato, the ceiling fan reduced house entry by 91% compared with the control house. There were no differences in indoor nightly temperature, humidity or CO2 between intervention and control houses in either experiment. The solar chimney did not improve human comfort assessed using psychrometric analysis. While the ceiling fan improved human comfort pre-midnight, in the morning it was too cool compared with the control house, although this could be remedied through provision of blankets. Further improvements to the design of the solar chimney are needed. High air velocity in the ceiling fan house probably reduced mosquito house entry by preventing mosquito flight. Improved ventilation in houses may reduce malaria transmission.


Subject(s)
Anopheles , Malaria , Animals , Humans , Gambia , Carbon Dioxide , Mosquito Vectors , Housing , Malaria/prevention & control
4.
Lancet Infect Dis ; 23(3): 361-370, 2023 03.
Article in English | MEDLINE | ID: mdl-36328000

ABSTRACT

BACKGROUND: Seasonal malaria chemoprevention is used in 13 countries in the Sahel region of Africa to prevent malaria in children younger than 5 years. Resistance of Plasmodium falciparum to seasonal malaria chemoprevention drugs across the region is a potential threat to this intervention. METHODS: Between December, 2015, and March, 2016, and between December, 2017, and March, 2018, immediately following the 2015 and 2017 malaria transmission seasons, community surveys were done among children younger than 5 years and individuals aged 10-30 years in districts implementing seasonal malaria chemoprevention with sulfadoxine-pyrimethamine and amodiaquine in Burkina Faso, Chad, Guinea, Mali, Nigeria, Niger and The Gambia. Dried blood samples were collected and tested for P falciparum DNA by PCR. Resistance-associated haplotypes of the P falciparum genes crt, mdr1, dhfr, and dhps were identified by quantitative PCR and sequencing of isolates from the collected samples, and survey-weighted prevalence and prevalence ratio between the first and second surveys were estimated for each variant. FINDINGS: 5130 (17·5%) of 29 274 samples from 2016 and 2176 (7·6%) of 28 546 samples from 2018 were positive for P falciparum on quantitative PCR. Among children younger than 5 years, parasite carriage decreased from 2844 of 14 345 samples (19·8% [95% CI 19·2-20·5]) in 2016 to 801 of 14 019 samples (5·7% [5·3-6·1]) in 2018 (prevalence ratio 0·27 [95% CI 0·24-0·31], p<0·0001). Genotyping found no consistent evidence of increasing prevalence of amodiaquine resistance-associated variants of crt and mdr1 between 2016 and 2018. The dhfr haplotype IRN (consisting of 51Ile-59Arg-108Asn) was common at both survey timepoints, but the dhps haplotype ISGEAA (431Ile-436Ser-437Gly-540Glu-581Ala-613Ala), crucial for resistance to sulfadoxine-pyrimethamine, was always rare. Parasites carrying amodiaquine resistance-associated variants of both crt and mdr1 together with dhfr IRN and dhps ISGEAA occurred in 0·05% of isolates. The emerging dhps haplotype VAGKGS (431Val-436Ala-437Gly-540Lys-581Gly-613Ser) was present in four countries. INTERPRETATION: In seven African countries, evidence of a significant reduction in parasite carriage among children receiving seasonal malaria chemoprevention was found 2 years after intervention scale-up. Combined resistance-associated haplotypes remained rare, and seasonal malaria chemoprevention with sulfadoxine-pyrimethamine and amodiaquine is expected to retain effectiveness. The threat of future erosion of effectiveness due to dhps variant haplotypes requires further monitoring. FUNDING: Unitaid.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Child , Humans , Plasmodium falciparum , Amodiaquine/therapeutic use , Haplotypes , Antimalarials/therapeutic use , Seasons , Prevalence , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Drug Combinations , Chemoprevention , Nigeria , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/therapeutic use , Genomics , Drug Resistance/genetics
5.
Parasit Vectors ; 15(1): 435, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36397132

ABSTRACT

BACKGROUND: Vector control interventions in sub-Saharan Africa rely on insecticide-treated nets and indoor residual spraying. Insecticide resistance, poor coverage of interventions, poor quality nets and changes in vector behavior threaten the effectiveness of these interventions and, consequently, alternative tools are needed. Mosquitoes die after feeding on humans or animals treated with ivermectin (IVM). Mass drug administration (MDA) with IVM could reduce vector survival and decrease malaria transmission. The entomological impact of MDA of combined IVM and dihydroartemisinin-piperaquine was assessed in a community-based, cluster-randomized trial. METHODS: A cluster-randomized trial was implemented in 2018 and 2019 in 32 villages in the Upper River Region, The Gambia. The with the inhabitants of 16 intervention villages eligible to receive three monthly rounds of MDA at the beginning of the malaria transmission season. Entomological surveillance with light traps and human landing catches (HLC) was carried out during a 7- to 14-day period after each round of MDA, and then monthly until the end of the year. The mosquitocidal effect of IVM was determined by direct membrane feeding assays. RESULTS: Of the 15,017 mosquitoes collected during the study period, 99.65% (n = 14,965) were Anopheles gambiae sensu lato (An. gambiae s.l.), comprising Anopheles arabiensis (56.2%), Anopheles coluzzii (24.5%), Anopheles gambiae sensu stricto (An. gembiae s.s.; 16.0%) and Anopheles funestus sensu lato (An. funestus s.l.; 0.35%). No effect of the intervention on vector parity was observed. Vector density determined on light trap collections was significantly lower in the intervention villages in 2019 (adjusted incidence rate ratio: 0.39; 95% confidence interval [CI]: 0.20, 0.74; P = 0.005) but not in 2018. However, vector density determined in HLC collections was similar in both the intervention and control villages. The entomological inoculation rate was significantly lower in the intervention villages than in the control villages (odds ratio: 0.36, 95% CI: 0.19, 0.70; P = 0·003). Mosquito mortality was significantly higher when blood fed on IVM-treated individuals up to 21 days post-treatment, particularly in adults and individuals with a higher body mass index. CONCLUSION: Mass drug administration with IVM decreased vector density and the entomological inoculation rate while the effect on vector parity was less clear. Survival of mosquitoes fed on blood collected from IVM-treated individuals was significantly lower than that in mosquitoes which fed on controls. The influence of host characteristics on mosquito survivorship indicated that dose optimization could improve IVM efficacy. Future detailed entomological evaluation trials in which IVM is administered as stand-alone intervention may elucidate the contribution of this drug to the observed reduction in transmission.


Subject(s)
Anopheles , Artemisinins , Ivermectin , Malaria , Mass Drug Administration , Adult , Animals , Humans , Anopheles/drug effects , Artemisinins/administration & dosage , Artemisinins/therapeutic use , Gambia/epidemiology , Ivermectin/administration & dosage , Ivermectin/therapeutic use , Malaria/prevention & control , Mosquito Vectors/drug effects
6.
PLoS One ; 16(11): e0260084, 2021.
Article in English | MEDLINE | ID: mdl-34843498

ABSTRACT

INTRODUCTION: Infertility in Sub-Saharan Africa constitutes an important social and public health problem. Yet, there is a paucity of research on the experiences of men living with infertility, especially in West Africa. This study explored men's aetiological knowledge, views and experiences of infertility in the West Coast region of The Gambia, West Africa. METHODOLOGY: An explorative qualitative study was conducted among men living in the rural and urban communities of the West Coast region of The Gambia using in-depth interviews. Data collection and analysis were performed concurrently, and thematic data analysis was an iterative process carried out using NVivo 11 Analysis Software. RESULTS: Gambian men had generally poor knowledge of infertility, allocating it to God, spiritual powers and bodily (biomedical) factors. While societal norms meant that infertility was generally attributed to women, some men allocated male-factor infertility to poor sperm quality and impotence. Infertility threatened participants' sense of masculinity and resulted in psychosocial distress, including stigma, feelings of isolation, and low self-esteem. CONCLUSION: Normative gendered frameworks of infertility result in high levels of female responsibilisation in the Gambian context. Yet men diagnosed with infertility experience significant, often unrecognized, psychological and social distress. We therefore call for increased attention to male-factor infertility, and the promotion of male engagement with infertility-care and services, both of which are essential for successfully addressing infertility and it's psychosocial consequences in The Gambia.


Subject(s)
Infertility, Male/epidemiology , Adult , Africa South of the Sahara/epidemiology , Data Analysis , Data Collection , Emotions , Erectile Dysfunction , Gambia/epidemiology , Health Knowledge, Attitudes, Practice/ethnology , Humans , Infertility, Male/etiology , Knowledge , Male , Masculinity , Middle Aged , Pilot Projects , Public Health , Rural Population , Social Stigma
7.
J R Soc Interface ; 18(178): 20201030, 2021 05.
Article in English | MEDLINE | ID: mdl-33975463

ABSTRACT

In sub-Saharan Africa, cooler houses would increase the coverage of insecticide-treated bednets, the primary malaria control tool. We examined whether improved ventilation, using windows screened with netting, cools houses at night and reduces malaria mosquito house entry in The Gambia. Identical houses were constructed, with badly fitting doors the only mosquito entry points. Two men slept in each house and mosquitoes captured using light traps. First, temperature and mosquito density were compared in four houses with 0, 1, 2 and 3 screened windows. Second, carbon dioxide (CO2), a major mosquito attractant, was measured in houses with (i) no windows, (ii) screened windows and (iii) screened windows and screened doors. Computational fluid dynamic modelling captured the spatial movement of CO2. Increasing ventilation made houses cooler, more comfortable and reduced malaria mosquito house entry; with three windows reducing mosquito densities by 95% (95%CI = 90-98%). Screened windows and doors reduced the indoor temperature by 0.6°C (95%CI = 0.5-0.7°C), indoor CO2 concentrations by 31% between 21.00 and 00.00 h and malaria mosquito entry by 76% (95%CI = 69-82%). Modelling shows screening reduces CO2 plumes from houses. Under our experimental conditions, cross-ventilation not only reduced indoor temperature, but reduced the density of house-entering malaria mosquitoes, by weakening CO2 plumes emanating from houses.


Subject(s)
Anopheles , Malaria , Africa South of the Sahara , Animals , Gambia , Housing , Humans , Malaria/prevention & control , Male , Mosquito Vectors , Temperature
8.
J R Soc Interface ; 18(178): 20210256, 2021 05.
Article in English | MEDLINE | ID: mdl-34034532

ABSTRACT

Most malaria infections in sub-Saharan Africa are acquired indoors, thus finding effective ways of preventing mosquito house entry should reduce transmission. Since most malaria mosquitoes fly less than 1 m from the ground, we tested whether raising buildings off the ground would prevent the entry of Anopheles gambiae, the principal African malaria vector, in rural Gambia. Nightly collections of mosquitoes were made using light traps from four inhabited experimental huts, each of which could be moved up or down. Mosquito house entry declined with increasing height, with a hut at 3 m reducing An. gambiae house entry by 84% when compared with huts on the ground. A propensity for malaria vectors to fly close to the ground and reduced levels of carbon dioxide, a major mosquito attractant, in elevated huts, may explain our findings. Raised buildings may help reduce malaria transmission in Africa.


Subject(s)
Anopheles , Malaria , Africa , Animals , Gambia , Malaria/epidemiology , Malaria/prevention & control , Mosquito Control , Mosquito Vectors
9.
Am J Trop Med Hyg ; 104(3): 812-813, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33534749

ABSTRACT

The Nairobi Summit, held in November 2019 and convened by the United Nations Fund for Population Activities, claims to have represented "all nations and peoples, and all segments" of society during its high-level conference. The overall aim of the summit was to mobilize political will and financial commitments that are urgently needed to "finally and fully" implement the 1994 International Conference on Population and Development (ICPD) Program of Action. Despite the recommendation by ICPD to incorporate infertility care in reproductive health services, the new Nairobi Statement largely neglects the topic of infertility. This is particularly troublesome as infertility is a global health problem affecting between 52.6 and 72.4 million couples worldwide, with a high prevalence in low- and middle-income settings. For many people around the world, infertility constitutes an emotional, social, and financial burden, yet appropriate services directed toward preventing and addressing infertility are often inaccessible, unaffordable, or nonexistent. With the impetus of a wider reproductive justice community, we call for the integration of infertility into global reproductive health research and practice, urging policy makers, practitioners, researchers, activists, and funders worldwide to bring focused attention to addressing challenges posed by a lack of safe, effective, and dignified fertility management among those in need.


Subject(s)
Infertility/therapy , International Cooperation , Needs Assessment/ethics , Needs Assessment/standards , Reproductive Health Services/organization & administration , Social Justice/ethics , Social Justice/standards , Adult , Congresses as Topic , Female , Humans , Kenya , Male , Middle Aged
10.
Malar J ; 19(1): 27, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31941507

ABSTRACT

BACKGROUND: Bubaque is the most populous island of the Bijagos archipelago, a group of malaria-endemic islands situated off the coast of Guinea-Bissau, West Africa. Malaria vector control on Bubaque relies almost exclusively on the use of long-lasting insecticidal nets (LLINs). However, there is little information on local vector bionomics and insecticide resistance. METHODS: A survey of mosquito species composition was performed at the onset of the wet season (June/July) and the beginning of the dry season (November/December). Sampling was performed using indoor adult light-traps and larval dipping. Anopheles mosquitoes were identified to species level and assessed for kdr allele frequency by TaqMan PCR. Females were analysed for sporozoite positivity by CSP-ELISA. Resistance to permethrin and α-cypermethrin was measured using the CDC-bottle bioassay incorporating the synergist piperonyl-butoxide. RESULTS: Several Anopheles species were found on the island, all belonging to the Anopheles gambiae sensu lato (s.l.) complex, including An. gambiae sensu stricto, Anopheles coluzzii, Anopheles melas, and An. gambiae/An. coluzzii hybrids. Endophagic Anopheles species composition and abundance showed strong seasonal variation, with a majority of An. gambiae (50% of adults collected) caught in June/July, while An. melas was dominant in November/December (83.9% of adults collected). Anopheles gambiae had the highest sporozoite rate in both seasons, with infection rates of 13.9% and 20% in June/July and November/December, respectively. Moderate frequencies of the West African kdr allele were found in An. gambiae (36%), An. coluzzii (35%), An. gambiae/An. coluzzii hybrids (42%). Bioassays suggest moderate resistance to α-cypermethrin, but full susceptibility to permethrin. CONCLUSIONS: The island of Bubaque maintained an An. gambiae s.l. population in both June/July and November/December. Anopheles gambiae was the primary vector at the onset of the wet season, while An. melas is likely to be responsible for most dry season transmission. There was moderate kdr allele frequency and synergist assays suggest likely metabolic resistance, which could reduce the efficacy of LLINs. Future control of malaria on the islands should consider the seasonal shift in mosquito species, and should employ continuous monitoring for insecticide resistance.


Subject(s)
Anopheles/classification , Insecticide Resistance , Malaria/transmission , Mosquito Vectors/classification , Animals , Anopheles/enzymology , Anopheles/genetics , Biological Assay/methods , DNA/isolation & purification , Female , Genotyping Techniques , Guinea-Bissau , Insecticide Resistance/genetics , Islands , Malaria/prevention & control , Mosquito Vectors/enzymology , Mosquito Vectors/genetics , Pilot Projects , Seasons , Surveys and Questionnaires , Vascular Endothelial Growth Factor Receptor-2/genetics
11.
Parasit Vectors ; 12(1): 287, 2019 Jun 04.
Article in English | MEDLINE | ID: mdl-31164149

ABSTRACT

BACKGROUND: Vector control activities, namely long-lasting insecticidal nets (LLIN) and indoor residual spraying (IRS), have contributed significantly to the decreasing malaria burden observed in The Gambia since 2008. Nevertheless, insecticide resistance may threaten such success; it is important to regularly assess the susceptibility of local malaria vectors to available insecticides. METHODS: In the transmission seasons of 2016 and 2017, Anopheles gambiae (s.l.) larvae were sampled in or around the nine vector surveillance sentinel sites of the Gambia National Malaria Control Programme (GNMCP) and in a few additional sampling points. Using WHO susceptibility bioassays, female adult mosquitoes were exposed to insecticide-impregnated papers. Molecular identification of sibling species and insecticide resistance molecular markers was done on a subset of 2000 female mosquitoes. RESULTS: A total of 4666 wild-caught female adult mosquitoes were exposed to either permethrin (n = 665), deltamethrin (n = 744), DDT (n = 1021), bendiocarb (n = 990) or pirimiphos-methyl (n = 630) insecticide-impregnated papers and control papers (n = 616). Among the 2000 anophelines, 1511 (80.7%) were Anopheles arabiensis, 204 (10.9%) Anopheles coluzzii, 75 (4%) Anopheles gambiae (s.s.), and 83 (4.4%) An. gambiae (s.s.) and An. coluzzii hybrids. There was a significant variation in the composition and species distribution by regions and year, P = 0.009. Deltamethrin, permethrin and DDT resistance was found in An. arabiensis, especially in the coastal region, and was mediated by Vgsc-1014F/S mutations (odds ratio = 34, P = 0.014). There was suspected resistance to pirimiphos-methyl (actellic 300CS) in the North Bank Region although only one survivor had the Ace-1-119S mutation. CONCLUSIONS: As no confirmed resistance to bendiocarb and actellic 300CS was detected, the national malaria control programme can continue using these insecticides for IRS. Nevertheless, the detection of Ace-1 119S mutation warrants extensive monitoring. The source of insecticide pressure driving insecticide resistance to pyrethroids and DDT detected at the coastal region should be further investigated in order to properly manage the spread of resistance in The Gambia.


Subject(s)
Anopheles , Insecticide Resistance , Insecticides , Animals , Female , Gambia , Larva , Mosquito Vectors , Nitriles , Permethrin , Pyrethrins
12.
PLoS One ; 12(11): e0187059, 2017.
Article in English | MEDLINE | ID: mdl-29095834

ABSTRACT

Over the last decades, malaria has declined substantially in The Gambia but its transmission has not been interrupted. In order to better target control interventions, it is essential to understand the dynamics of residual transmission. This prospective cohort study was conducted between June 2013 and April 2014 in six pairs of villages across The Gambia. Blood samples were collected monthly during the transmission season (June-December) from all residents aged ≥6 months (4,194 individuals) and then in April (dry season). Entomological data were collected monthly throughout the malaria transmission season. Ownership of Long-Lasting Insecticidal Nets was 71.5% (2766/3869). Incidence of malaria infection and clinical disease varied significantly across the country, with the highest values in eastern (1.7/PYAR) than in central (0.2 /PYAR) and western (0.1/PYAR) Gambia. Malaria infection at the beginning of the transmission season was significantly higher in individuals who slept outdoors (HR = 1.51, 95% CI: 1.02-2.23, p = 0.04) and in those who had travelled outside the village (HR = 2.47, 95% CI: 1.83-3.34, p <0.01). Sub-patent infections were more common in older children (HR = 1.35, 95% CI: 1.04-1.6, p <0.01) and adults (HR = 1.53, 95% CI: 1.23-1.89, p<0.01) than in younger children. The risk of clinical malaria was significantly higher in households with at least one infected individual at the beginning of the transmission season (HR = 1.76, p<0.01). Vector parity was significantly higher in the eastern part of the country, both in the south (90.7%, 117/129, p<0.01) and the north bank (81.1%, 227/280, p<0.01), than in the western region (41.2%, 341/826), indicating higher vector survival. There is still significant residual malaria transmission across The Gambia, particularly in the eastern region. Additional interventions able to target vectors escaping Long-Lasting Insecticidal Nets and indoor residual spraying are needed to achieve malaria elimination.


Subject(s)
Malaria/transmission , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Female , Gambia/epidemiology , Humans , Infant , Malaria/epidemiology , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...