Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Physiol Res ; 72(4): 425-444, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37795886

ABSTRACT

FTO and ALKBH5 proteins are essential erasers of N6-adenosine methylation in RNA. We studied how levels of FTO and ALKBH5 proteins changed during mouse embryonic development, aging, cardiomyogenesis, and neuroectodermal differentiation. We observed that aging in male and female mice was associated with FTO up-regulation in mouse hearts, brains, lungs, and kidneys, while the ALKBH5 level remained stable. FTO and ALKBH5 proteins were up-regulated during experimentally induced cardiomyogenesis, but the level of ALKBH5 protein was not changed when neuroectodermal differentiation was induced. HDAC1 depletion in mouse ES cells caused FTO down-regulation. In these cells, mRNA, carrying information from genes that regulate histone signature, RNA processing, and cell differentiation, was characterized by a reduced level of N6-adenosine methylation in specific gene loci, primarily regulating cell differentiation into neuroectoderm. Together, when we compared both RNA demethylating proteins, the FTO protein level undergoes the most significant changes during cell differentiation and aging. Thus, we conclude that during aging and neuronal differentiation, m6A RNA demethylation is likely regulated by the FTO protein but not via the function of ALKBH5.


Subject(s)
AlkB Homolog 5, RNA Demethylase , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Male , Mice , Animals , Female , Up-Regulation , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , AlkB Homolog 5, RNA Demethylase/metabolism , Embryonic Development , RNA/metabolism , Cell Differentiation , Adenosine/metabolism , Aging/genetics
2.
BMC Genomics ; 16: 546, 2015 Jul 25.
Article in English | MEDLINE | ID: mdl-26223308

ABSTRACT

BACKGROUND: Silene latifolia represents one of the best-studied plant sex chromosome systems. A new approach using RNA-seq data has recently identified hundreds of new sex-linked genes in this species. However, this approach is expected to miss genes that are either not expressed or are expressed at low levels in the tissue(s) used for RNA-seq. Therefore other independent approaches are needed to discover such sex-linked genes. RESULTS: Here we used 10 well-characterized S. latifolia sex-linked genes and their homologs in Silene vulgaris, a species without sex chromosomes, to screen BAC libraries of both species. We isolated and sequenced 4 Mb of BAC clones of S. latifolia X and Y and S. vulgaris genomic regions, which yielded 59 new sex-linked genes (with S. vulgaris homologs for some of them). We assembled sequences that we believe represent the tip of the Xq arm. These sequences are clearly not pseudoautosomal, so we infer that the S. latifolia X has a single pseudoautosomal region (PAR) on the Xp arm. The estimated mean gene density in X BACs is 2.2 times lower than that in S. vulgaris BACs, agreeing with the genome size difference between these species. Gene density was estimated to be extremely low in the Y BAC clones. We compared our BAC-located genes with the sex-linked genes identified in previous RNA-seq studies, and found that about half of them (those with low expression in flower buds) were not identified as sex-linked in previous RNA-seq studies. We compiled a set of ~70 validated X/Y genes and X-hemizygous genes (without Y copies) from the literature, and used these genes to show that X-hemizygous genes have a higher probability of being undetected by the RNA-seq approach, compared with X/Y genes; we used this to estimate that about 30% of our BAC-located genes must be X-hemizygous. The estimate is similar when we use BAC-located genes that have S. vulgaris homologs, which excludes genes that were gained by the X chromosome. CONCLUSIONS: Our BAC sequencing identified 59 new sex-linked genes, and our analysis of these BAC-located genes, in combination with RNA-seq data suggests that gene losses from the S. latifolia Y chromosome could be as high as 30 %, higher than previous estimates of 10-20%.


Subject(s)
Chromosomes, Plant/genetics , Evolution, Molecular , Sex Determination Processes , Silene/genetics , Base Sequence , Gene Expression Regulation, Plant , Molecular Sequence Data , Sex Chromosomes/genetics , Silene/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL