Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 6353, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289202

ABSTRACT

Artemisinin partial resistance may facilitate selection of Plasmodium falciparum resistant to combination therapy partner drugs. We evaluated 99 P. falciparum isolates collected in 2021 from northern Uganda, where resistance-associated PfK13 C469Y and A675V mutations have emerged, and eastern Uganda, where these mutations are uncommon. With the ex vivo ring survival assay, isolates with the 469Y mutation (median survival 7.3% for mutant, 2.5% mixed, and 1.4% wild type) and/or mutations in Pfcoronin or falcipain-2a, had significantly greater survival; all isolates with survival >5% had mutations in at least one of these proteins. With ex vivo growth inhibition assays, susceptibility to lumefantrine (median IC50 14.6 vs. 6.9 nM, p < 0.0001) and dihydroartemisinin (2.3 vs. 1.5 nM, p = 0.003) was decreased in northern vs. eastern Uganda; 14/49 northern vs. 0/38 eastern isolates had lumefantrine IC50 > 20 nM (p = 0.0002). Targeted sequencing of 819 isolates from 2015-21 identified multiple polymorphisms associated with altered drug susceptibility, notably PfK13 469Y with decreased susceptibility to lumefantrine (p = 6 × 10-8) and PfCRT mutations with chloroquine resistance (p = 1 × 10-20). Our results raise concern regarding activity of artemether-lumefantrine, the first-line antimalarial in Uganda.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Humans , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Antimalarials/pharmacology , Antimalarials/therapeutic use , Lumefantrine/pharmacology , Lumefantrine/therapeutic use , Artemether, Lumefantrine Drug Combination/pharmacology , Artemether, Lumefantrine Drug Combination/therapeutic use , Uganda , Malaria, Falciparum/drug therapy , Drug Resistance/genetics , Artemether/pharmacology , Artemether/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Chloroquine/pharmacology , Drug Combinations , Protozoan Proteins/metabolism
2.
Lancet Microbe ; 2(9): e441-e449, 2021 09.
Article in English | MEDLINE | ID: mdl-34553183

ABSTRACT

BACKGROUND: Treatment and control of malaria depends on artemisinin-based combination therapies (ACTs) and is challenged by drug resistance, but thus far resistance to artemisinins and partner drugs has primarily occurred in southeast Asia. The aim of this study was to characterise antimalarial drug susceptibility of Plasmodium falciparum isolates from Tororo and Busia districts in Uganda. METHODS: In this prospective longitudinal study, P falciparum isolates were collected from patients aged 6 months or older presenting at the Tororo District Hospital (Tororo district, a site with relatively low malaria incidence) or Masafu General Hospital (Busia district, a high-incidence site) in eastern Uganda with clinical symptoms of malaria, a positive Giemsa-stained blood film for P falciparum, and no signs of severe disease. Ex-vivo susceptibilities to ten antimalarial drugs were measured using a 72-h microplate growth inhibition assay with SYBR Green detection. Relevant P falciparum genetic polymorphisms were characterised by molecular methods. We compared results with those from earlier studies in this region and searched for associations between drug susceptibility and parasite genotypes. FINDINGS: From June 10, 2016, to July 29, 2019, 361 P falciparum isolates were collected in the Busia district and 79 in the Tororo district from 440 participants. Of 440 total isolates, 392 (89%) successfully grew in culture and showed excellent drug susceptibility for chloroquine (median half-maximal inhibitory concentration [IC50] 20·0 nM [IQR 12·0-26·0]), monodesethylamodiaquine (7·1 nM [4·3-8·9]), pyronaridine (1·1 nM [0·7-2·3]), piperaquine (5·6 nM [3·3-8·6]), ferroquine (1·8 nM [1·5-3·3]), AQ-13 (24·0 nM [17·0-32·0]), lumefantrine (5·1 nM [3·2-7·7]), mefloquine (9·5 nM [6·6-13·0]), dihydroartemisinin (1·5 nM [1·0-2·0]), and atovaquone (0·3 nM [0·2-0·4]). Compared with results from our study in 2010-13, significant improvements in susceptibility were seen for chloroquine (median IC50 288·0 nM [IQR 122·0-607·0]; p<0·0001), monodesethylamodiaquine (76·0 nM [44·0-137]; p<0·0001), and piperaquine (21·0 nM [7·6-43·0]; p<0·0001), a small but significant decrease in susceptibility was seen for lumefantrine (3·0 nM [1·1-7·6]; p<0·0001), and no change in susceptibility was seen with dihydroartemisinin (1·3 nM [0·8-2·5]; p=0·64). Chloroquine resistance (IC50>100 nM) was more common in isolates from the Tororo district (11 [15%] of 71), compared with those from the Busia district (12 [4%] of 320; p=0·0017). We showed significant increases between 2010-12 and 2016-19 in the prevalences of wild-type P falciparum multidrug resistance protein 1 (PfMDR1) Asn86Tyr from 60% (391 of 653) to 99% (418 of 422; p<0·0001), PfMDR1 Asp1246Tyr from 60% (390 of 650) to 90% (371 of 419; p<0·0001), and P falciparum chloroquine resistance transporter (PfCRT) Lys76Thr from 7% (44 of 675) to 87% (364 of 417; p<0·0001). INTERPRETATION: Our results show marked changes in P falciparum drug susceptibility phenotypes and genotypes in Uganda during the past decade. These results suggest that additional changes will be seen over time and continued surveillance of susceptibility to key ACT components is warranted. FUNDING: National Institutes of Health and Medicines for Malaria Venture.


Subject(s)
Antimalarials , Malaria, Falciparum , Antimalarials/pharmacology , Chloroquine/pharmacology , Genotype , Humans , Longitudinal Studies , Lumefantrine/therapeutic use , Malaria, Falciparum/drug therapy , Phenotype , Plasmodium falciparum/genetics , Prospective Studies , Uganda/epidemiology
3.
J Med Chem ; 63(11): 6179-6202, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32390431

ABSTRACT

The global impact of malaria remains staggering despite extensive efforts to eradicate the disease. With increasing drug resistance and the absence of a clinically available vaccine, there is an urgent need for novel, affordable, and safe drugs for prevention and treatment of malaria. Previously, we described a novel antimalarial acridone chemotype that is potent against both blood-stage and liver-stage malaria parasites. Here, we describe an optimization process that has produced a second-generation acridone series with significant improvements in efficacy, metabolic stability, pharmacokinetics, and safety profiles. These findings highlight the therapeutic potential of dual-stage targeting acridones as novel drug candidates for further preclinical development.


Subject(s)
Acridones/chemistry , Antimalarials/chemistry , Acridones/pharmacokinetics , Acridones/pharmacology , Acridones/therapeutic use , Administration, Oral , Animals , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Antimalarials/therapeutic use , Cell Survival/drug effects , Disease Models, Animal , Female , Half-Life , Hep G2 Cells , Humans , Life Cycle Stages/drug effects , Malaria/drug therapy , Malaria/pathology , Male , Mice , Mice, Inbred C57BL , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Structure-Activity Relationship
4.
Article in English | MEDLINE | ID: mdl-28923866

ABSTRACT

Dihydroartemisinin-piperaquine (DP) has demonstrated excellent efficacy for the treatment and prevention of malaria in Uganda. However, resistance to both components of this regimen has emerged in Southeast Asia. The efficacy of artemether-lumefantrine, the first-line regimen to treat malaria in Uganda, has also been excellent, but continued pressure may select for parasites with decreased sensitivity to lumefantrine. To gain insight into current drug sensitivity patterns, ex vivo sensitivities were assessed and genotypes previously associated with altered drug sensitivity were characterized for 58 isolates collected in Tororo, Uganda, from subjects presenting in 2016 with malaria from the community or as part of a clinical trial comparing DP chemoprevention regimens. Compared to community isolates, those from trial subjects had lower sensitivities to the aminoquinolines chloroquine, monodesethyl amodiaquine, and piperaquine and greater sensitivities to lumefantrine and mefloquine, an observation consistent with DP selection pressure. Compared to results for isolates from 2010 to 2013, the sensitivities of 2016 community isolates to chloroquine, amodiaquine, and piperaquine improved (geometric mean 50% inhibitory concentrations [IC50] = 248, 76.9, and 19.1 nM in 2010 to 2013 and 33.4, 14.9, and 7.5 nM in 2016, respectively [P < 0.001 for all comparisons]), the sensitivity to lumefantrine decreased (IC50 = 3.0 nM in 2010 to 2013 and 5.4 nM in 2016 [P < 0.001]), and the sensitivity to dihydroartemisinin was unchanged (IC50 = 1.4 nM). These changes were accompanied by decreased prevalence of transporter mutations associated with aminoquinoline resistance and low prevalence of polymorphisms recently associated with resistance to artemisinins or piperaquine. Antimalarial drug sensitivities are changing in Uganda, but novel genotypes associated with DP treatment failure in Asia are not prevalent.


Subject(s)
Antimalarials/therapeutic use , Drug Resistance/genetics , Malaria, Falciparum/drug therapy , Membrane Transport Proteins/genetics , Multidrug Resistance-Associated Proteins/genetics , Plasmodium falciparum/drug effects , Protozoan Proteins/genetics , Adolescent , Amodiaquine/analogs & derivatives , Amodiaquine/therapeutic use , Artemisinins/therapeutic use , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Child , Child, Preschool , Chloroquine/therapeutic use , Ethanolamines/therapeutic use , Female , Fluorenes/therapeutic use , Gene Expression , Humans , Infant , Inhibitory Concentration 50 , Lumefantrine , Malaria, Falciparum/parasitology , Male , Mefloquine/therapeutic use , Membrane Transport Proteins/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Mutation , Parasitic Sensitivity Tests , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Quinolines/therapeutic use , Uganda , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...