Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Cell Death Dis ; 15(4): 281, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643274

ABSTRACT

The human mitochondrial DNA polymerase gamma is a holoenzyme, involved in mitochondrial DNA (mtDNA) replication and maintenance, composed of a catalytic subunit (POLG) and a dimeric accessory subunit (POLG2) conferring processivity. Mutations in POLG or POLG2 cause POLG-related diseases in humans, leading to a subset of Mendelian-inherited mitochondrial disorders characterized by mtDNA depletion (MDD) or accumulation of multiple deletions, presenting multi-organ defects and often leading to premature death at a young age. Considering the paucity of POLG2 models, we have generated a stable zebrafish polg2 mutant line (polg2ia304) by CRISPR/Cas9 technology, carrying a 10-nucleotide deletion with frameshift mutation and premature stop codon. Zebrafish polg2 homozygous mutants present slower development and decreased viability compared to wild type siblings, dying before the juvenile stage. Mutants display a set of POLG-related phenotypes comparable to the symptoms of human patients affected by POLG-related diseases, including remarkable MDD, altered mitochondrial network and dynamics, and reduced mitochondrial respiration. Histological analyses detected morphological alterations in high-energy demanding tissues, along with a significant disorganization of skeletal muscle fibres. Consistent with the last finding, locomotor assays highlighted a decreased larval motility. Of note, treatment with the Clofilium tosylate drug, previously shown to be effective in POLG models, could partially rescue MDD in Polg2 mutant animals. Altogether, our results point at zebrafish as an effective model to study the etiopathology of human POLG-related disorders linked to POLG2, and a suitable platform to screen the efficacy of POLG-directed drugs in POLG2-associated forms.


Subject(s)
DNA-Directed DNA Polymerase , Mitochondrial Diseases , Animals , Humans , DNA-Directed DNA Polymerase/genetics , Zebrafish/genetics , DNA Polymerase gamma/genetics , DNA, Mitochondrial/genetics , Mitochondria/genetics , Mitochondria/pathology , Mutation/genetics , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/genetics
2.
J Am Coll Cardiol ; 83(8): 797-807, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38383094

ABSTRACT

BACKGROUND: In recent years, it has become evident that arrhythmogenic cardiomyopathy (ACM) displays a wide spectrum of ventricular involvement. Furthermore, the influence of various clinical phenotypes on the prognosis of the disease is currently being assessed. OBJECTIVES: The purpose of this study was to evaluate the impact of phenotypic expression in ACM on patient outcomes. METHODS: We conducted an analysis of 446 patients diagnosed with ACM. These patients were categorized into 3 groups based on their phenotype: arrhythmogenic right ventricular cardiomyopathy (ARVC) (right-dominant ACM), arrhythmogenic left ventricular cardiomyopathy (ALVC) (left-dominant ACM), and biventricular arrhythmogenic cardiomyopathy (BIV). We compared clinical, instrumental, and genetic findings among these groups and also evaluated their outcomes RESULTS: Overall, 44% of patients were diagnosed with ARVC, 23% with ALVC, and 33% with BIV forms. Subjects showing with ARVC and BIV phenotype had a significantly higher incidence of life-threatening ventricular arrhythmias compared with ALVC (P < 0.001). On the other hand, heart failure, heart transplantation, and death caused by cardiac causes were more frequent in individuals with BIV forms compared to those with ALVC and ARVC (P < 0.001). Finally, patients with an ALVC phenotype had a higher incidence of hot phases compared with those with ARVC and BIV forms (P = 0.013). CONCLUSIONS: The comparison of ACM phenotypes demonstrated that patients with right ventricular involvement, such as ARVC and BIV forms, exhibit a higher incidence of life-threatening ventricular arrhythmias. Conversely, ACM forms characterized by left ventricular involvement, such as ALVC and BIV, show a higher incidence of heart failure, heart transplantation, and hot phases.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Heart Failure , Humans , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/diagnosis , Cardiomyopathies/genetics , Heart Failure/epidemiology , Phenotype
3.
Cell Death Discov ; 9(1): 441, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057295

ABSTRACT

Arrhythmogenic cardiomyopathy (AC) is an inherited disorder characterized by progressive loss of the ventricular myocardium causing life-threatening ventricular arrhythmias, syncope and sudden cardiac death in young and athletes. About 40% of AC cases carry one or more mutations in genes encoding for desmosomal proteins, including Desmoplakin (Dsp). We present here the first stable Dsp knock-out (KO) zebrafish line able to model cardiac alterations and cell signalling dysregulation, characteristic of the AC disease, on which environmental factors and candidate drugs can be tested. Our stable Dsp knock-out (KO) zebrafish line was characterized by cardiac alterations, oedema and bradycardia at larval stages. Histological analysis of mutated adult hearts showed reduced contractile structures and abnormal shape of the ventricle, with thinning of the myocardial layer, vessels dilation and presence of adipocytes within the myocardium. Moreover, TEM analysis revealed "pale", disorganized and delocalized desmosomes. Intensive physical training protocol caused a global worsening of the cardiac phenotype, accelerating the progression of the disease. Of note, we detected a decrease of Wnt/ß-catenin signalling, recently associated with AC pathogenesis, as well as Hippo/YAP-TAZ and TGF-ß pathway dysregulation. Pharmacological treatment of mutated larvae with SB216763, a Wnt/ß-catenin agonist, rescued pathway expression and cardiac abnormalities, stabilizing the heart rhythm. Overall, our Dsp KO zebrafish line recapitulates many AC features observed in human patients, pointing at zebrafish as a suitable system for in vivo analysis of environmental modulators, such as the physical exercise, and the screening of pathway-targeted drugs, especially related to the Wnt/ß-catenin signalling cascade.

4.
J Clin Med ; 11(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36431211

ABSTRACT

BACKGROUND: In the last few years, a phenotypic variant of arrhythmogenic cardiomyopathy (ACM) labeled arrhythmogenic left ventricular cardiomyopathy (ALVC) has been defined and researched. This type of cardiomyopathy is characterized by a predominant left ventricular (LV) involvement with no or minor right ventricular (RV) abnormalities. Data on the specific risk and management of pregnancy in women affected by ALVC are, thus far, not available. We have sought to characterize pregnancy course and outcomes in women affected by ALVC through the evaluation of a series of childbearing patients. METHODS: A series of consecutive female ALVC patients were analyzed in a cross-sectional, retrospective study. Study protocol included 12-lead ECG assessments, 24-h Holter ECG evaluations, 2D-echocardiogram tests, cardiac magnetic resonance assessments, and genetic analysis. Furthermore, the long-term disease course of childbearing patients was compared with a group of nulliparous ALVC women. RESULTS: A total of 35 patients (mean age 45 ± 9 years, 51% probands) were analyzed. Sixteen women (46%) reported a pregnancy, for a total of 27 singleton viable pregnancies (mean age at first childbirth 30 ± 9 years). Before pregnancy, all patients were in the NYHA class I and none of the patients reported a previous heart failure (HF) episode. No significant differences were found between childbearing and nulliparous women regarding ECG features, LV dimensions, function, and extent of late enhancement. Overall, 7 patients (20%, 4 belonging to the childbearing group) experienced a sustained ventricular tachycardia and 2 (6%)-one for each group-showed heart failure (HF) episodes. The analysis of arrhythmia-free survival patients did not show significant differences between childbearing and nulliparous women. CONCLUSIONS: In a cohort of ALVC patients without previous episodes of HF, pregnancy was well tolerated, with no significant influence on disease progression and degree of electrical instability. Further studies on a larger cohort of women with different degrees of disease extent and genetic background are needed in order to achieve a more comprehensive knowledge regarding the outcome of pregnancy in ALVC patients.

5.
Front Cell Dev Biol ; 10: 943127, 2022.
Article in English | MEDLINE | ID: mdl-36051436

ABSTRACT

Foetal Growth Restriction (FGR), previously known as Intrauterine Growth Restriction (IUGR), is an obstetrical condition due to placental insufficiency, affecting yearly about 30 million newborns worldwide. In this work, we aimed to identify and pharmacologically target signalling pathways specifically involved in the FGR condition, focusing on FGR-related cardiovascular phenotypes. The transcriptional profile of human umbilical cords from FGR and control cases was compared with the response to hypoxia of zebrafish (Danio rerio) transgenic lines reporting in vivo the activity of twelve signalling pathways involved in embryonic development. Wnt/ß-catenin and Jak/Stat3 were found as key pathways significantly dysregulated in both human and zebrafish samples. This information was used in a chemical-genetic analysis to test drugs targeting Wnt/ß-catenin and Jak/Stat3 pathways to rescue a set of FGR phenotypes, including growth restriction and cardiovascular modifications. Treatments with the Wnt/ß-catenin agonist SB216763 successfully rescued body dimensions, cardiac shape, and vessel organization in zebrafish FGR models. Our data support the Wnt/ß-catenin pathway as a key FGR marker and a promising target for pharmacological intervention in the FGR condition.

6.
Biomolecules ; 12(9)2022 09 19.
Article in English | MEDLINE | ID: mdl-36139162

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is a genetically determined myocardial disease, characterized by myocytes necrosis with fibrofatty substitution and ventricular arrhythmias that can even lead to sudden cardiac death. The presence of inflammatory cell infiltrates in endomyocardial biopsies or in autoptic specimens of ACM patients has been reported, suggesting a possible role of inflammation in the pathophysiology of the disease. Furthermore, chest pain episodes accompanied by electrocardiographic changes and troponin release have been observed and defined as the "hot-phase" phenomenon. The aim of this critical systematic review was to assess the clinical features of ACM patients presenting with "hot-phase" episodes. According to PRISMA guidelines, a search was run in the PubMed, Scopus and Web of Science electronic databases using the following keywords: "arrhythmogenic cardiomyopathy"; "myocarditis" or "arrhythmogenic cardiomyopathy"; "troponin" or "arrhythmogenic cardiomyopathy"; and "hot-phase". A total of 1433 titles were retrieved, of which 65 studies were potentially relevant to the topic. Through the application of inclusion and exclusion criteria, 9 papers reporting 103 ACM patients who had experienced hot-phase episodes were selected for this review. Age at time of episodes was available in 76% of cases, with the mean age reported being 26 years ± 14 years (min 2-max 71 years). Overall, 86% of patients showed left ventricular epicardial LGE. At the time of hot-phase episodes, 49% received a diagnosis of ACM (Arrhythmogenic left ventricular cardiomyopathy in the majority of cases), 19% of dilated cardiomyopathy and 26% of acute myocarditis. At the genetic study, Desmoplakin (DSP) was the more represented disease-gene (69%), followed by Plakophillin-2 (9%) and Desmoglein-2 (6%). In conclusion, ACM patients showing hot-phase episodes are usually young, and DSP is the most common disease gene, accounting for 69% of cases. Currently, the role of "hot-phase" episodes in disease progression and arrhythmic risk stratification remains to be clarified.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Myocarditis , Arrhythmogenic Right Ventricular Dysplasia/diagnosis , Arrhythmogenic Right Ventricular Dysplasia/genetics , Desmogleins , Desmoplakins/genetics , Humans
7.
J Clin Med ; 11(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35893404

ABSTRACT

In recent years a phenotypic variant of Arrhythmogenic cardiomyopathy has been described, characterized by predominant left ventricular (LV) involvement with no or minor right ventricular abnormalities, referred to as Arrhythmogenic left ventricular cardiomyopathy (ALVC). Different disease-genes have been identified in this form, such as Desmoplakin (DSP), Filamin C (FLNC), Phospholamban (PLN) and Desmin (DES). The main purpose of this critical systematic review was to assess the level of knowledge on genetic background and clinical features of ALVC. A search (updated to April 2022) was run in the PubMed, Scopus, and Web of Science electronic databases. The search terms used were "arrhythmogenic left ventricular cardiomyopathy" OR "arrhythmogenic cardiomyopathy" and "gene" OR "arrhythmogenic dysplasia" and "gene". The most represented disease-gene turned out to be DSP, accounting for half of published cases, followed by FLNC. Overall, ECG abnormalities were reported in 58% of patients. Major ventricular arrhythmias were recorded in 26% of cases; an ICD was implanted in 29% of patients. A total of 6% of patients showed heart failure symptoms, and 15% had myocarditis-like episodes. DSP is confirmed to be the most represented disease-gene in ALVC patients. An analysis of reported clinical features of ALVC patients show an important degree of electrical instability, which frequently required an ICD implant. Moreover, myocarditis-like episodes are common.

8.
Eur Heart J ; 43(32): 3053-3067, 2022 08 21.
Article in English | MEDLINE | ID: mdl-35766183

ABSTRACT

AIMS: To study the impact of genotype on the performance of the 2019 risk model for arrhythmogenic right ventricular cardiomyopathy (ARVC). METHODS AND RESULTS: The study cohort comprised 554 patients with a definite diagnosis of ARVC and no history of sustained ventricular arrhythmia (VA). During a median follow-up of 6.0 (3.1,12.5) years, 100 patients (18%) experienced the primary VA outcome (sustained ventricular tachycardia, appropriate implantable cardioverter defibrillator intervention, aborted sudden cardiac arrest, or sudden cardiac death) corresponding to an annual event rate of 2.6% [95% confidence interval (CI) 1.9-3.3]. Risk estimates for VA using the 2019 ARVC risk model showed reasonable discriminative ability but with overestimation of risk. The ARVC risk model was compared in four gene groups: PKP2 (n = 118, 21%); desmoplakin (DSP) (n = 79, 14%); other desmosomal (n = 59, 11%); and gene elusive (n = 160, 29%). Discrimination and calibration were highest for PKP2 and lowest for the gene-elusive group. Univariable analyses revealed the variable performance of individual clinical risk markers in the different gene groups, e.g. right ventricular dimensions and systolic function are significant risk markers in PKP2 but not in DSP patients and the opposite is true for left ventricular systolic function. CONCLUSION: The 2019 ARVC risk model performs reasonably well in gene-positive ARVC (particularly for PKP2) but is more limited in gene-elusive patients. Genotype should be included in future risk models for ARVC.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Arrhythmias, Cardiac , Arrhythmogenic Right Ventricular Dysplasia/genetics , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control , Genotype , Humans , Risk Assessment , Risk Factors
9.
Heart Rhythm ; 19(8): 1315-1324, 2022 08.
Article in English | MEDLINE | ID: mdl-35470109

ABSTRACT

BACKGROUND: Desmoplakin (DSP) genetic variants have been reported in arrhythmogenic cardiomyopathy with particular regard to predominant left ventricular (LV) involvement. OBJECTIVE: The purpose of this study was to improve our understanding of clinical phenotype and outcome of DSP variant carriers. METHODS: The clinical picture and outcome of 73 patients (36% probands) harboring a pathogenic/likely pathogenic DSP variant were evaluated. RESULTS: The phenotype during follow-up (mean 11 years; range 1-39 years) changed in 25 patients (35%), arrhythmogenic LV cardiomyopathy (ALVC) forms being the most frequent (n = 26 [36%]), followed by biventricular (BIV; n = 20 [27%]) and arrhythmogenic right ventricular cardiomyopathy (ARVC; n = 16 [22%]) forms. Major ventricular arrhythmias were detected in 21 patients (29%), and they were more common in ARVC (n = 6, 56%) and BIV forms (n = 8, 40%) than in ALVC forms (n = 4, 15%). In patients with ALVC, major ventricular arrhythmias occurred in the setting of a normal/mildly reduced systolic function. Heart failure (HF) occurred in 6 patients (8%); none affected with ALVC. Females showed more commonly LV involvement, while ARVC forms were more frequently detected in males (21 [61%] vs 15 [38%]; P = .147). Males showed a higher incidence of major ventricular arrhythmias (18 [52%] vs 9 [24%]; P = .036), HF (11 [31%] vs 1 [3%]; P = .004), and cardiac death (11 [31%] vs 0 [0%]; P < .001). CONCLUSION: The clinical phenotype in pathogenic/likely pathogenic DSP variant carriers is wide. Although most patients show LV involvement, 16 (22%) has right ventricular abnormalities in keeping with a "classical" arrhythmogenic cardiomyopathy form. In ALVC, HF and major ventricular arrhythmias seem less common than in right ventricular and BIV variants. Females show more frequently LV involvement and a better outcome.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Desmoplakins , Arrhythmias, Cardiac , Arrhythmogenic Right Ventricular Dysplasia/diagnosis , Arrhythmogenic Right Ventricular Dysplasia/genetics , Cardiomyopathies/genetics , Desmoplakins/genetics , Female , Follow-Up Studies , Humans , Male , Mutation
11.
Heart Rhythm ; 19(2): 235-243, 2022 02.
Article in English | MEDLINE | ID: mdl-34601126

ABSTRACT

BACKGROUND: Mutations in filamin-C (FLNC) are involved in the pathogenesis of arrhythmogenic cardiomyopathy (ACM) and dilated cardiomyopathy (DCM), and have been associated with a left ventricular (LV) phenotype, characterized by nonischemic LV fibrosis, ventricular arrhythmias, and sudden cardiac death (SCD). OBJECTIVE: The purpose of this study was to investigate the prevalence of FLNC variants in a gene-negative ACM population and to evaluate the clinical phenotype and SCD risk factors in FLNC-associated cardiomyopathies. METHODS: ACM probands who tested negative for mutations in ACM-related genes underwent FLNC genetic screening. Clinical and genetic data were collected and pooled together with those of previously published FLNC-ACM and FLNC-DCM patients. RESULTS: In a cohort of 270 gene-elusive ACM probands, 12 (4.4%) had FLNC variants, and 13 additional family members carried the same mutation. Eighteen FLNC variant carriers (72%) had a diagnosis of ACM (72% male; mean age 45 years). On pooled analysis, 145 patients with FLNC-associated cardiomyopathies were included. Electrocardiographic (ECG) low QRS voltages were detected in 37%, and T-wave inversion (TWI) in inferolateral/lateral leads in 24%. Among 67 patients who had cardiac magnetic resonance (CMR), LV nonischemic late gadolinium enhancement (LGE) was found in 75%. SCD occurred in 28 patients (19%), 15 of whom showed LV nonischemic LGE/fibrosis. Compared with patients with no SCD, those who experienced SCD more frequently had inferolateral/lateral TWI (P = .013) and LV LGE/fibrosis (P = .033). CONCLUSION: Clinical phenotype of FLNC cardiomyopathies is characterized by late-onset presentation and typical ECG and CMR features. SCD is associated with the presence of LV LGE/fibrosis but not with severe LV systolic dysfunction.


Subject(s)
Cardiomyopathies/genetics , Death, Sudden, Cardiac/etiology , Filamins/genetics , Adolescent , Adult , Aged , Child , Contrast Media , Electrocardiography , Female , Humans , Magnetic Resonance Imaging, Cine , Male , Middle Aged , Mutation , Pedigree , Phenotype , Prevalence , Risk
13.
Genet Med ; 23(10): 1961-1968, 2021 10.
Article in English | MEDLINE | ID: mdl-34120153

ABSTRACT

PURPOSE: The genetic architecture of Plakophilin 2 (PKP2) cardiomyopathy can inform our understanding of its variant pathogenicity and protein function. METHODS: We assess the gene-wide and regional association of truncating and missense variants in PKP2 with arrhythmogenic cardiomyopathy (ACM), and arrhythmogenic right ventricular cardiomyopathy (ARVC) specifically. A discovery data set compares genetic testing requisitions to gnomAD. Validation is performed in a rigorously phenotyped definite ARVC cohort and non-ACM individuals in the Geisinger MyCode cohort. RESULTS: The etiologic fraction (EF) of ACM-related diagnoses from truncating variants in PKP2 is significant (0.85 [0.80,0.88], p < 2 × 10-16), increases for ARVC specifically (EF = 0.96 [0.94,0.97], p < 2 × 10-16), and is highest in definite ARVC versus non-ACM individuals (EF = 1.00 [1.00,1.00], p < 2 × 10-16). Regions of missense variation enriched for ACM probands include known functional domains and the C-terminus, which was not previously known to contain a functional domain. No regional enrichment was identified for truncating variants. CONCLUSION: This multicohort evaluation of the genetic architecture of PKP2 demonstrates the specificity of PKP2 truncating variants for ARVC within the ACM disease spectrum. We identify the PKP2 C-terminus as a potential functional domain and find that truncating variants likely cause disease irrespective of transcript position.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Plakophilins , Arrhythmogenic Right Ventricular Dysplasia/genetics , Genetic Testing , Humans , Phenotype , Plakophilins/genetics
14.
Circulation ; 144(1): 7-19, 2021 07 06.
Article in English | MEDLINE | ID: mdl-33947203

ABSTRACT

BACKGROUND: Each of the cardiomyopathies, classically categorized as hypertrophic cardiomyopathy, dilated cardiomyopathy (DCM), and arrhythmogenic right ventricular cardiomyopathy, has a signature genetic theme. Hypertrophic cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy are largely understood as genetic diseases of sarcomere or desmosome proteins, respectively. In contrast, >250 genes spanning >10 gene ontologies have been implicated in DCM, representing a complex and diverse genetic architecture. To clarify this, a systematic curation of evidence to establish the relationship of genes with DCM was conducted. METHODS: An international panel with clinical and scientific expertise in DCM genetics evaluated evidence supporting monogenic relationships of genes with idiopathic DCM. The panel used the Clinical Genome Resource semiquantitative gene-disease clinical validity classification framework with modifications for DCM genetics to classify genes into categories on the basis of the strength of currently available evidence. Representation of DCM genes on clinically available genetic testing panels was evaluated. RESULTS: Fifty-one genes with human genetic evidence were curated. Twelve genes (23%) from 8 gene ontologies were classified as having definitive (BAG3, DES, FLNC, LMNA, MYH7, PLN, RBM20, SCN5A, TNNC1, TNNT2, TTN) or strong (DSP) evidence. Seven genes (14%; ACTC1, ACTN2, JPH2, NEXN, TNNI3, TPM1, VCL) including 2 additional ontologies were classified as moderate evidence; these genes are likely to emerge as strong or definitive with additional evidence. Of these 19 genes, 6 were similarly classified for hypertrophic cardiomyopathy and 3 for arrhythmogenic right ventricular cardiomyopathy. Of the remaining 32 genes (63%), 25 (49%) had limited evidence, 4 (8%) were disputed, 2 (4%) had no disease relationship, and 1 (2%) was supported by animal model data only. Of the 16 evaluated clinical genetic testing panels, most definitive genes were included, but panels also included numerous genes with minimal human evidence. CONCLUSIONS: In the curation of 51 genes, 19 had high evidence (12 definitive/strong, 7 moderate). It is notable that these 19 genes explain only a minority of cases, leaving the remainder of DCM genetic architecture incompletely addressed. Clinical genetic testing panels include most high-evidence genes; however, genes lacking robust evidence are also commonly included. We recommend that high-evidence DCM genes be used for clinical practice and that caution be exercised in the interpretation of variants in variable-evidence DCM genes.


Subject(s)
Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/genetics , Evidence-Based Medicine/methods , Expert Testimony/methods , Genetic Predisposition to Disease/genetics , Genetic Testing/methods , Evidence-Based Medicine/standards , Expert Testimony/standards , Genetic Testing/standards , Humans
15.
Circ Genom Precis Med ; 14(3): e003273, 2021 06.
Article in English | MEDLINE | ID: mdl-33831308

ABSTRACT

BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited disease characterized by ventricular arrhythmias and progressive ventricular dysfunction. Genetic testing is recommended, and a pathogenic variant in an ARVC-associated gene is a major criterion for diagnosis according to the 2010 Task Force Criteria. As incorrect attribution of a gene to ARVC can contribute to misdiagnosis, we assembled an international multidisciplinary ARVC Clinical Genome Resource Gene Curation Expert Panel to reappraise all reported ARVC genes. METHODS: Following a comprehensive literature search, six 2-member teams conducted blinded independent curation of reported ARVC genes using the semiquantitative Clinical Genome Resource framework. RESULTS: Of 26 reported ARVC genes, only 6 (PKP2, DSP, DSG2, DSC2, JUP, and TMEM43) had strong evidence and were classified as definitive for ARVC causation. There was moderate evidence for 2 genes, DES and PLN. The remaining 18 genes had limited or no evidence. RYR2 was refuted as an ARVC gene since clinical data and model systems exhibited a catecholaminergic polymorphic ventricular tachycardia phenotype. In ClinVar, only 5 pathogenic/likely pathogenic variants (1.1%) in limited evidence genes had been reported in ARVC cases in contrast to 450 desmosome gene variants (97.4%). CONCLUSIONS: Using the Clinical Genome Resource approach to gene-disease curation, only 8 genes (PKP2, DSP, DSG2, DSC2, JUP, TMEM43, PLN, and DES) had definitive or moderate evidence for ARVC, and these genes accounted for nearly all pathogenic/likely pathogenic ARVC variants in ClinVar. Therefore, only pathogenic/likely pathogenic variants in these 8 genes should yield a major criterion for ARVC diagnosis. Pathogenic/likely pathogenic variants identified in other genes in a patient should prompt further phenotyping as variants in many of these genes are associated with other cardiovascular conditions.


Subject(s)
Arrhythmias, Cardiac/genetics , Arrhythmogenic Right Ventricular Dysplasia/genetics , Genetic Predisposition to Disease , Female , Humans , Male
16.
Heart Rhythm ; 18(8): 1394-1403, 2021 08.
Article in English | MEDLINE | ID: mdl-33857645

ABSTRACT

BACKGROUND: Arrhythmogenic cardiomyopathy (AC) is a myocardial disease due to desmosomal mutations whose pathogenesis is incompletely understood. OBJECTIVE: The purpose of this study was to identify molecular pathways underlying early AC by gene expression profiling in both humans and animal models. METHODS: RNA sequencing for differentially expressed genes (DEGs) was performed on the myocardium of transgenic mice overexpressing the Desmoglein2-N271S mutation before phenotype onset. Zebrafish signaling reporters were used for in vivo validation. Whole exome sequencing was undertaken in 10 genotype-negative AC patients and subsequent direct sequencing in 140 AC index cases. RESULTS: Among 29 DEGs identified at early disease stages, Lgals3/GAL3 (lectin, galactoside-binding, soluble, 3) showed reduced cardiac expression in transgenic mice and in 3 AC patients who suffered sudden cardiac death without overt structural remodeling. Four rare missense variants of LGALS3 were identified in 5 human AC probands. Pharmacologic inhibition of Lgals3 in zebrafish reduced Wnt and transforming growth factor-ß signaling, increased Hippo/YAP-TAZ signaling, and induced alterations in desmoplakin membrane localization, desmosome integrity and stability. Increased LGALS3 plasma expression in genotype-positive AC patients and CD98 activation supported the galectin-3 (GAL3) release by circulating macrophages pointing toward the stabilization of desmosomal assembly at the injured regions. CONCLUSION: GAL3 plays a crucial role in early AC onset through regulation of Wnt/ß-catenin signaling and intercellular adhesion.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia/genetics , DNA/genetics , Galectin 3/genetics , Mutation , Animals , Arrhythmogenic Right Ventricular Dysplasia/metabolism , DNA Mutational Analysis , Disease Models, Animal , Galectin 3/metabolism , Mice , Mice, Transgenic , Phenotype
17.
Cell Death Dis ; 12(1): 100, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33469036

ABSTRACT

The DNA polymerase gamma (Polg) is a nuclear-encoded enzyme involved in DNA replication in animal mitochondria. In humans, mutations in the POLG gene underlie a set of mitochondrial diseases characterized by mitochondrial DNA (mtDNA) depletion or deletion and multiorgan defects, named POLG disorders, for which an effective therapy is still needed. By applying antisense strategies, ENU- and CRISPR/Cas9-based mutagenesis, we have generated embryonic, larval-lethal and adult-viable zebrafish Polg models. Morphological and functional characterizations detected a set of phenotypes remarkably associated to POLG disorders, including cardiac, skeletal muscle, hepatic and gonadal defects, as well as mitochondrial dysfunctions and, notably, a perturbed mitochondria-to-nucleus retrograde signaling (CREB and Hypoxia pathways). Next, taking advantage of preliminary evidence on the candidate molecule Clofilium tosylate (CLO), we tested CLO toxicity and then its efficacy in our zebrafish lines. Interestingly, at well tolerated doses, the CLO drug could successfully rescue mtDNA and Complex I respiratory activity to normal levels, even in mutant phenotypes worsened by treatment with Ethidium Bromide. In addition, the CLO drug could efficiently restore cardio-skeletal parameters and mitochondrial mass back to normal values. Altogether, these evidences point to zebrafish as a valuable vertebrate organism to faithfully phenocopy multiple defects detected in POLG patients. Moreover, this model represents an excellent platform to screen, at the whole-animal level, candidate molecules with therapeutic effects in POLG disorders.


Subject(s)
Mitochondrial Diseases/genetics , Quaternary Ammonium Compounds/metabolism , Animals , Disease Models, Animal , Phenotype , Zebrafish
18.
Europace ; 23(6): 907-917, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33313835

ABSTRACT

AIMS: The aim of this study is to evaluate the clinical features of patients affected by arrhythmogenic cardiomyopathy (AC), presenting with chest pain and myocardial enzyme release in the setting of normal coronary arteries ('hot phase'). METHODS AND RESULTS: We collected detailed anamnestic, clinical, instrumental, genetic, and histopathological findings as well as follow-up data in a series of AC patients who experienced a hot phase. A total of 23 subjects (12 males, mean age at the first episode 27 ± 16 years) were identified among 560 AC probands and family members (5%). At first episode, 10 patients (43%) already fulfilled AC diagnostic criteria. Twelve-lead electrocardiogram recorded during symptoms showed ST-segment elevation in 11 patients (48%). Endomyocardial biopsy was performed in 11 patients, 8 of them during the acute phase showing histologic evidence of virus-negative myocarditis in 88%. Cardiac magnetic resonance was performed in 21 patients, 12 of them during the acute phase; oedema and/or hyperaemia were detected in 7 (58%) and late gadolinium enhancement in 11 (92%). At the end of follow-up (mean 17 years, range 1-32), 12 additional patients achieved an AC diagnosis. Genetic testing was positive in 77% of cases and pathogenic mutations in desmoplakin gene were the most frequent. No patient complained of sustained ventricular arrhythmias or died suddenly during the 'hot phase'. CONCLUSION: 'Hot phase' represents an uncommon clinical presentation of AC, which often occurs in paediatric patients and carriers of desmoplakin gene mutations. Tissue characterization, family history, and genetic test represent fundamental diagnostic tools for differential diagnosis.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Myocarditis , Arrhythmogenic Right Ventricular Dysplasia/diagnosis , Arrhythmogenic Right Ventricular Dysplasia/genetics , Child , Contrast Media , Desmoplakins/genetics , Gadolinium , Humans , Male , Myocarditis/diagnosis , Myocarditis/genetics
19.
Int J Mol Sci ; 21(17)2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32899376

ABSTRACT

Arrhythmogenic cardiomyopathy (AC) is an inherited cardiac disease characterized by a progressive fibro-fatty replacement of the working myocardium and by life-threatening arrhythmias and risk of sudden cardiac death. Pathogenic variants are identified in nearly 50% of affected patients mostly in genes encoding for desmosomal proteins. AC incomplete penetrance and phenotypic variability advocate that other factors than genetics may modulate the disease, such as microRNAs (miRNAs). MiRNAs are small noncoding RNAs with a primary role in gene expression regulation and network of cellular processes. The implication of miRNAs in AC pathogenesis and their role as biomarkers for early disease detection or differential diagnosis has been the objective of multiple studies employing diverse designs and methodologies to detect miRNAs and measure their expression levels. Here we summarize experiments, evidence, and flaws of the different studies and hitherto knowledge of the implication of miRNAs in AC pathogenesis and diagnosis.


Subject(s)
Arrhythmias, Cardiac/pathology , Biomarkers/analysis , Cardiomyopathies/pathology , Gene Expression Regulation , Genetic Predisposition to Disease , MicroRNAs/genetics , Animals , Arrhythmias, Cardiac/genetics , Cardiomyopathies/genetics , Humans , Phenotype
20.
J Assist Reprod Genet ; 37(4): 753-762, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32242295

ABSTRACT

PURPOSE: To develop and assess a novel custom next-generation sequencing (NGS) panel for male infertility genetic diagnosis. METHODS: A total of 241 subjects with diagnosis of idiopathic infertility ranging from azoospermia to normozoospermia were sequenced by a custom NGS panel including AR, FSHB, FSHR, KLHL10, NR5A1, NANOS1, SEPT12, SYCP3, TEX11 genes. Variants with minor allele frequency < 1% were confirmed by Sanger sequencing. RESULTS: Nineteen missense variants were detected in 23 subjects with abnormal sperm count, whilst no variants were identified in normozoospermic men. Of identified variants, we prioritized variants classified as pathogenic and of uncertain significance (VUS) (63.1%, 12/19). No missense variants were found in males with normal seminal parameters (0/67). Therefore, the prevalence of variants was significantly higher in patients with spermatogenic impairment (16/174 vs 0/67, p = 0.007). CONCLUSION: This study confirms the utility to apply NGS panel for infertility diagnosis in order to find new genetic variants potentially linked to male infertility with much higher accuracy than standard tests suggested by guidelines. Indeed, based on biological significance, prevalence in the general population and clinical data of patients, it is plausible that identified variants in this study might be linked to quantitative spermatogenic impairment, although further studies are needed.


Subject(s)
Azoospermia/diagnosis , High-Throughput Nucleotide Sequencing , Infertility, Male/diagnosis , Mutation, Missense/genetics , Adult , Azoospermia/genetics , Azoospermia/pathology , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Gene Frequency , Genetic Testing , Humans , Infertility, Male/genetics , Infertility, Male/pathology , Intracellular Signaling Peptides and Proteins/genetics , Male , Polymorphism, Single Nucleotide/genetics , RNA-Binding Proteins/genetics , Receptors, Androgen/genetics , Receptors, FSH/genetics , Septins/genetics , Steroidogenic Factor 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...