Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Mar Pollut Bull ; 207: 116901, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39217872

ABSTRACT

One of the world's crucial areas for crude oil exploration and extraction is the southern Gulf of Mexico, where Terminos Lagoon (TL) is located. Sediments from the TL region were used to assess the spatial patterns, origins, and ecotoxicological risks associated with 16 priority polycyclic aromatic hydrocarbons (PAHs; 3.1-248.9 ng⸳g-1 dry weight basis, dw) and trace metals (Ni = 11.0-104.0 mg⸳kg-1; V = 2.0-35.0 mg⸳kg-1 dw) linked to anthropogenic activities. Although origin indices based on PAHs and metals concentrations indicate no crude oil pollution in the region, sources of pyrogenic PAHs were identified. A chemometric approach demonstrated associations between organic matter and PAHs, and that metal accumulation depends mostly by the input of lithogenic materials. Ecotoxicological risk estimations showed a higher risk of possible adverse effects in sites near swamps and mangrove zones, highlighting the need of future monitoring. This study provides a reference for policymakers to conserve Mexico's largest coastal lagoon and other oil-impacted coastal areas worldwide.


Subject(s)
Environmental Monitoring , Geologic Sediments , Nickel , Petroleum , Polycyclic Aromatic Hydrocarbons , Vanadium , Water Pollutants, Chemical , Geologic Sediments/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Gulf of Mexico , Water Pollutants, Chemical/analysis , Vanadium/analysis , Nickel/analysis , Petroleum/analysis , Petroleum Pollution/analysis
2.
Mar Pollut Bull ; 199: 115981, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171164

ABSTRACT

Remote sensing data and numerical simulation are important tools to rebuild any oil spill accident letting to identify its source and trajectory. Through these tools was identified an oil spill that affected Oaxacan coast in October 2022. The SAR images were processed with a standard method included in SNAP software, and the numerical simulation was made using Lagrangian transport model included in GNOME software. With the combining of these tools was possible to discriminate the look-alikes from true oil slicks; which are the main issue when satellite images are used. Obtained results showed that 4.3m3 of crude oil were released into the ocean from a punctual point of oil pollution. This oil spill was classified such as a small oil spill. The marine currents and weathering processes were the main drivers that controlled the crude oil displacement and its dispersion. It was estimated in GNOME that 1.6 m3 of crude oil was floating on the sea (37.2 %), 2.4 m3 was evaporated into the atmosphere (55.8 %) and 0.3 m3 reached the coast of Oaxaca (7 %). This event affected 82 km of coastline, but the most important touristic areas as well as turtle nesting zones were not affected by this small crude oil spill. Results indicated that the marine-gas-pump number 3 in Salina Cruz, Oaxaca, is a punctual point of oil pollution in the Southern Mexican Pacific Ocean. Further work is needed to assess the economic and ecological damage to Oaxacan coast caused by this small oil spill.


Subject(s)
Petroleum Pollution , Petroleum , Petroleum Pollution/analysis , Environmental Monitoring/methods , Remote Sensing Technology , Petroleum/analysis , Weather
3.
Sci Total Environ ; 879: 163095, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37001666

ABSTRACT

Coastal lagoons are ecosystems that are considered providers of a variety species of commercial value to the humans. However, they are currently threatened by a variety of anthropogenic-derived impacts, including environmental pollution by microplastics (MPs). For these reasons, it is necessary to identify suitable biomonitors for monitoring MP activities in aquatic environments and for estimating human ingestion of MPs from the consumption of commercial shellfish species. Therefore, our aims were to identify the anthropogenic activities that supply MPs into a coastal lagoon in the southern Gulf of Mexico and their variety; to determine whether oysters (Crassostrea virginica) are suitable biomonitors to perform MPs monitoring activities and to conduct an estimation of how many MPs could a human consume by the ingestion of a commercial portion of oysters harvested in this coastal lagoon. Our results noted that MP concentrations from water and sediment collected in Laguna de Terminos were 210,000 and 11.3 times higher than values reported in other protected areas worldwide. MPs chemical composition revealed that fishing and urban activities supply mainly polyethylene (21.1 %), poly (butadiene) diol (12.6 %) and polyethylene terephthalate (9.5 %). It was also determined that oysters did not reflect the spatial distribution of MPs within the study area and that a human could consume up to 806.1 MPs per 237.1 g serving of an oyster cocktail. Finally, a coastal lagoon polluted with MPs increases the risk of affecting species used for human consumption.


Subject(s)
Crassostrea , Water Pollutants, Chemical , Animals , Humans , Microplastics , Ecosystem , Plastics , Shellfish , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
4.
Mar Pollut Bull ; 183: 114088, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36063667

ABSTRACT

We assessed microplastics (MPs) contamination in water, sediments, and tissues (gills, digestive tract, and muscle) of two intertidal crab species with different ecological traits and commercial importance (Menippe mercenaria and Callinectes sapidus), from a coastal lagoon in the southeastern Gulf of Mexico. There were significant differences between MP abundances in the abiotic matrices and between crab species. The burrower, sedentary and carnivorous M. mercenaria bioaccumulates 50 % more MPs than the free-swimming, omnivorous C. sapidus. However, no differences were observed between species' tissues. Fragments were the predominant shape in the tissues of both species, with the exception in the digestive tract of M. mercenaria. We identified polyethylene, and polyethylene terephthalate in water samples and Silopren® in sediment. In both crab species, Silopren and polyethylene predominated. Differences in ecological traits resulted in different bioaccumulation patterns in intertidal crabs.


Subject(s)
Brachyura , Water Pollutants, Chemical , Animals , Bioaccumulation , Brachyura/physiology , Environmental Monitoring , Gulf of Mexico , Microplastics , Plastics , Polyethylene Terephthalates , Polyethylenes , Water , Water Pollutants, Chemical/analysis
5.
Sci Total Environ ; 730: 138643, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32402958

ABSTRACT

The petrochemical industry and urban activities are widely recognized worldwide as a source of pollution to mangrove environments. They can supply pollutants such as trace elements that can modify the ecosystem structure and associated services, as well as human populations. Through geochemical data, multivariate statistical analysis and pollution indices such as the enrichment factor (EF), geo-accumulation index (Igeo), adverse effect index (AEI) and the pollution load index (PLI), we evaluated the factors that control trace element distribution, punctual sources and determined the pollution level of sediments and their potential biological impact in the mangrove ecosystem of Isla del Carmen, Mexico. The factor and cluster analysis highlighted that the distribution of trace elements is influenced by the mineralogy, texture as well as urban derived sources. The pollution indices showed values in the punctual sources from the urban area of EF > 10, Igeo > 3, AEI > 3, PLI > 1 by Cu, Zn and Pb. Finally, the results revealed that mangroves from Isla del Carmen has a major influence from urban activities and natural sources rather than oil industry and also indicate a degraded environment as a result of anthropogenic activities that could have knock-on effect for human health if polluted marine organisms derived from the urban mangroves are consumed. CAPSULE ABSTRACT: Surface sediments show the influence of point sources on selected trace element concentrations correlated with human activities within the mangroves of Isla del Carmen, Mexico.


Subject(s)
Ecosystem , Environmental Monitoring , Geologic Sediments , Humans , Metals, Heavy , Mexico , Oils , Risk Assessment , Trace Elements , Water Pollutants, Chemical
6.
Sci Rep ; 8(1): 9428, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29930338

ABSTRACT

Microplastics are an increasingly important contaminant in the marine environment. Depending on their composition and degree of biofouling, many common microplastics are less dense than seawater and so tend to float at or near the ocean surface. As such, they may exhibit high concentrations in the sea surface microlayer (SML - the upper 1-1000 µm of the ocean) relative to deeper water. This paper examines the accumulation of microplastics, in particular microfibres, in the SML in two contrasting estuarine systems - the Hamble estuary and the Beaulieu estuary, southern U.K., via a novel and rapid SML-selective sampling method using a dipped glass plate. Microplastic concentrations (for identified fibres, of 0.05 to 4.5 mm length) were highest in the SML-selective samples (with a mean concentration of 43 ± 36 fibres/L), compared to <5 fibres/L for surface and sub-surface bulk water samples. Data collected show the usefulness of the dipped glass plate method as a rapid and inexpensive tool for sampling SML-associated microplastics in estuaries, and indicate that microplastics preferentially accumulate at the SML in estuarine conditions (providing a potential transfer mechanism for incorporation into upper intertidal sinks). Fibres are present (and readily sampled) in both developed and more pristine estuarine systems.

7.
Sci Total Environ ; 622-623: 325-336, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29220760

ABSTRACT

The Gulf of Mexico is considered one of the world's major marine ecosystems, supporting important fisheries and habitats such as barrier islands, mangrove forests, seagrass beds, coral reefs etc. It also hosts a range of complex offshore petroleum exploration, extraction, and refining industries, which may have chronic or acute impacts on ecosystem functioning. Previous work on the marine effects of this activity is geographically incomplete, and has tended to focus on direct hydrocarbon impacts, while impacts from other related contaminants (e.g. heavy metals, salt-rich drilling muds) which may be discharged from oil facilities have not been widely assessed. Here, we examine historical trace element accumulation in marine sediments collected from four sites in the Tamaulipas shelf, Gulf of Mexico, in the area of the Arenque oil field. Dated sediment cores were used to examine the sources, and historical and contemporary inputs, of trace metals (including those typically present in oil industry discharges) and their potential biological impact in the Tamaulipas aquatic environment over the last 100years. CaO (i.e. biogenic component) normalized data showed increasing V, Cr, Zn, Cu, Pb, Zr and Ba towards the sediment surface in three of the four cores, with Ba and V (based on an adverse effect index) possibly associated with adverse effects on organisms. Dated Ba/CaO profiles show an increase of 30-137% after opening of oil installations in the study area, and can be broadly correlated with increasing oil industry activities across the wider Gulf of Mexico. Data do not record however a clear enhancement of Ba concentration in sediment cores collected near to oil platforms over more distal cores, indicating that any Ba released from drilling platforms is incorporated quickly into the sediments around the drilling sites, and once this element has been deposited its rate of resuspension and mobility is low. CAPSULE ABSTRACT: Sediment core data from the Tamaulipas shelf show the influence of oil industry activities on selected trace element concentrations, with Ba/CaO broadly correlating with increasing oil industry activities across the wider Gulf of Mexico.

8.
Mar Pollut Bull ; 119(2): 204-213, 2017 Jun 30.
Article in English | MEDLINE | ID: mdl-28434667

ABSTRACT

This study examines sediment texture, geochemistry and sediment accumulation in cores from four sites in the Veracruz shelf area of the Gulf of Mexico, to assess the inputs of heavy metal(loid)s (and their potential biological impacts) in this carbonate-dominated shelf system, and to examine the rate of sedimentation near to the mouths of the La Antigua and Jamapa Rivers. The use of different pollution indices showed enrichment with Pb in all cores studied, although based on sediment quality guidelines As was the only element that has potential to occasionally cause damage to the benthic organisms present in the area. Heavy metal(loid) and sediment input from terrestrial and coastal sources is limited compared to more proximal, near-shore areas. The sediment core data presented however give a baseline dataset for heavy metal(loid) concentrations in the Veracruz shelf, against which future anthropogenic inputs can be assessed.


Subject(s)
Environmental Monitoring , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Animals , Antigua and Barbuda , Geologic Sediments , Gulf of Mexico , Metals, Heavy/toxicity , Surveys and Questionnaires , Water Pollutants, Chemical/toxicity
9.
Environ Monit Assess ; 185(11): 8891-907, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23645531

ABSTRACT

The south west coastal zone in the Gulf of Mexico is an area with great industrial and agricultural development, which experiences intensive prospecting and extraction of hydrocarbons. After running through industrial, agricultural, and urban areas, waters from both the Jamapa River and La Antigua River arrive here. The rivers' discharge areas of influence were estimated considering the textural and chemical composition of the supplied sediments. The main factors that determine sediment distribution were mineralogy, heavy minerals, carbonates, and anthropic contributions. The presence of metals in excess was evaluated using various pollution indicators, such as the enrichment factor, contamination factor, modified contamination factor, and geo-accumulation indexes. Data from different used contamination indexes show metal enrichments in As, Cu, Zn, Co, Cr, and V in La Antigua; As, Cu, and Cr in Jamapa; and As, Zn, and Pb in the Continental slope area. The adverse effects of metals on aquatic organisms were assessed using sediment quality guidelines that show Ni, As, Cu, and Cr may produce adverse effects on coastal areas. There was no evidence of contamination associated to the oil industry.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Gulf of Mexico , Rivers/chemistry , Water Pollution, Chemical/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL