Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Pediatr Blood Cancer ; 71(9): e31129, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38952259

ABSTRACT

BACKGROUND: The objective of this study is to assess the concordance and added value of combined comparative genomic hybridization plus single-nucleotide polymorphism microarray (CGH/SNP) analyses in pediatric acute lymphoblastic leukemia (ALL) risk stratification compared to conventional cytogenetic methods. PROCEDURE: This is a retrospective study that included patients aged 1-18 years diagnosed with de novo ALL at Sainte-Justine Hospital between 2016 and 2021. Results from conventional cytogenetic and molecular analyses were collected and compared to those of CGH/SNP. RESULTS: A total of 135 ALL patients were included. Sample failures or non-diagnostic analyses occurred in 17.8% cases with G-banding karyotypes versus 1.5% cases with CGH/SNP. The mean turnaround time for results was significantly faster for CGH/SNP than karyotype with 5.8 versus 10.7 days, respectively. The comparison of ploidy assessment by CGH/SNP and G-banding karyotype showed strong concordance (r = .82, p < .001, r2 = .68). Furthermore, G-banding karyotype did not detect additional clinically relevant aberrations that were missed by the combined analysis of CGH/SNP and fluorescence in situ hybridization. The most common gene alterations detected by CGH/SNP were deletions involving CDKN2A (35.8%), ETV6 (31.3%), CDKN2B (28.4%), PAX5 (20.1%), IKZF1 (12.7%), and copy-neutral loss of heterozygosity (CN-LOH) of 9p (9.0%). Among these, only ETV6 deletion was found to have a significant prognostic impact with superior event-free survival in both univariate and multivariate analyses (adjusted hazard ratio 0.08, 95% confidence interval: 0.01-0.50, p = .02). CONCLUSION: CGH/SNP provided faster, reliable, and highly concordant results than those obtained by conventional cytogenetics. CGH/SNP identified recurrent gene deletions in pediatric ALL, of which ETV6 deletion conferred a favorable prognosis.


Subject(s)
Comparative Genomic Hybridization , Polymorphism, Single Nucleotide , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Female , Child, Preschool , Male , Adolescent , Infant , Retrospective Studies , Comparative Genomic Hybridization/methods , Prognosis , Risk Assessment/methods , Follow-Up Studies , Survival Rate
2.
Blood Adv ; 8(1): 112-129, 2024 01 09.
Article in English | MEDLINE | ID: mdl-37729615

ABSTRACT

ABSTRACT: Acute megakaryoblastic leukemia (AMKL) is a rare, developmentally restricted, and highly lethal cancer of early childhood. The paucity and hypocellularity (due to myelofibrosis) of primary patient samples hamper the discovery of cell- and genotype-specific treatments. AMKL is driven by mutually exclusive chimeric fusion oncogenes in two-thirds of the cases, with CBFA2T3::GLIS2 (CG2) and NUP98 fusions (NUP98r) representing the highest-fatality subgroups. We established CD34+ cord blood-derived CG2 models (n = 6) that sustain serial transplantation and recapitulate human leukemia regarding immunophenotype, leukemia-initiating cell frequencies, comutational landscape, and gene expression signature, with distinct upregulation of the prosurvival factor B-cell lymphoma 2 (BCL2). Cell membrane proteomic analyses highlighted CG2 surface markers preferentially expressed on leukemic cells compared with CD34+ cells (eg, NCAM1 and CD151). AMKL differentiation block in the mega-erythroid progenitor space was confirmed by single-cell profiling. Although CG2 cells were rather resistant to BCL2 genetic knockdown or selective pharmacological inhibition with venetoclax, they were vulnerable to strategies that target the megakaryocytic prosurvival factor BCL-XL (BCL2L1), including in vitro and in vivo treatment with BCL2/BCL-XL/BCL-W inhibitor navitoclax and DT2216, a selective BCL-XL proteolysis-targeting chimera degrader developed to limit thrombocytopenia in patients. NUP98r AMKL were also sensitive to BCL-XL inhibition but not the NUP98r monocytic leukemia, pointing to a lineage-specific dependency. Navitoclax or DT2216 treatment in combination with low-dose cytarabine further reduced leukemic burden in mice. This work extends the cellular and molecular diversity set of human AMKL models and uncovers BCL-XL as a therapeutic vulnerability in CG2 and NUP98r AMKL.


Subject(s)
Antineoplastic Agents , Leukemia, Megakaryoblastic, Acute , Humans , Child , Child, Preschool , Animals , Mice , Leukemia, Megakaryoblastic, Acute/drug therapy , Leukemia, Megakaryoblastic, Acute/genetics , Leukemia, Megakaryoblastic, Acute/pathology , Proteomics , Transcription Factors , Proto-Oncogene Proteins c-bcl-2 , Repressor Proteins
3.
Front Med (Lausanne) ; 10: 1275927, 2023.
Article in English | MEDLINE | ID: mdl-37908851

ABSTRACT

Objectives: This study reports cases of systemic-onset juvenile idiopathic arthritis (sJIA) who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) at our center and reviews published outcomes of allo-HSCT in sJIA. Methods: We present a case report of two patients with sJIA who underwent allo-HSCT at a tertiary pediatric hospital. Each patient's disease course and allo-HSCT protocol/outcome are described. Outcomes of published cases of allo-HSCT in sJIA were compared to our experience. Results: Two patients with sJIA had allo-HSCT. Both failed multiple lines of disease-modifying anti-rheumatic drugs and experienced severe disease/treatment-related complications. Despite post-HSCT complications, both recovered without sequelae. Five years post-HSCT, patient 1 is in complete remission (CR) and is off medications. Patient 2 was in CR until 11 months post-HSCT after which he developed three disease flares. At 4 years post-HSCT he is currently in CR on Adalimumab monotherapy. Engraftment was excellent with a donor chimerism of 100% for patient 1 and 93% for patient 2. In the literature, the outcome of allo-HSCT is reported in 13 sJIA patients. When merging those with our 2 patients, 1/15 patients died and 13/14 achieved CR, of which 12 are off medications (median [range] follow-up: 2.2 [0.2-7.0] years). Extended follow-up data on 11 of the 13 reported sJIA patients showed that an additional 3 patients flared at 3, 4, and 10 years post-HSCT. Conclusion: We report two patients with severe/refractory sJIA who underwent successful allo-HSCT and achieved CR. Allo-HSCT is a potential curative option for severe/refractory sJIA. It should be considered only after failure of conventional sJIA treatments and when an HLA-matched donor is available in order to lower transplant-related mortality. The outcomes of reported sJIA patients who received allo-HSCT are encouraging but long-term follow-up data are needed to better characterized the risk-benefit ratio of this procedure.

4.
J Med Genet ; 60(12): 1218-1223, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37460202

ABSTRACT

BACKGROUND: Cancer predisposition syndromes (CPSs) are responsible for at least 10% of cancer diagnoses in children and adolescents, most of which are not clinically recognised prior to cancer diagnosis. A variety of clinical screening guidelines are used in healthcare settings to help clinicians detect patients who have a higher likelihood of having a CPS. The McGill Interactive Pediatric OncoGenetic Guidelines (MIPOGG) is an electronic health decision support tool that uses algorithms to help clinicians determine if a child/adolescent diagnosed with cancer should be referred to genetics for a CPS evaluation. METHODS: This study assessed MIPOGG's performance in identifying Li-Fraumeni, DICER1, Constitutional mismatch repair deficiency and Gorlin (nevoid basal cell carcinoma) syndromes in a retrospective series of 84 children diagnosed with cancer and one of these four CPSs in Canadian hospitals over an 18-year period. RESULTS: MIPOGG detected 82 of 83 (98.8%) evaluable patients with any one of these four genetic conditions and demonstrated an appropriate rationale for suggesting CPS evaluation. When compared with syndrome-specific clinical screening criteria, MIPOGG's ability to correctly identify children with any of the four CPSs was equivalent to, or outperformed, existing clinical criteria respective to each CPS. CONCLUSION: This study adds evidence that MIPOGG is an appropriate tool for CPS screening in clinical practice. MIPOGG's strength is that it starts with a specific cancer diagnosis and incorporates criteria relevant for associated CPSs, making MIPOGG a more universally accessible diagnostic adjunct that does not require in-depth knowledge of each CPS.


Subject(s)
Decision Support Systems, Clinical , Neoplastic Syndromes, Hereditary , Child , Humans , Algorithms , Neoplastic Syndromes, Hereditary/diagnosis , Neoplastic Syndromes, Hereditary/genetics , Retrospective Studies
5.
Blood Adv ; 7(21): 6532-6539, 2023 11 14.
Article in English | MEDLINE | ID: mdl-36735769

ABSTRACT

Children with Down syndrome (DS) are at a significantly higher risk of developing acute myeloid leukemia, also termed myeloid leukemia associated with DS (ML-DS). In contrast to the highly favorable prognosis of primary ML-DS, the limited data that are available for children who relapse or who have refractory ML-DS (r/r ML-DS) suggest a dismal prognosis. There are few clinical trials and no standardized treatment approach for this population. We conducted a retrospective analysis of international study groups and pediatric oncology centers and identified 62 patients who received treatment with curative intent for r/r ML-DS between year 2000 to 2021. Median time from diagnosis to relapse was 6.8 (range, 1.1-45.5) months. Three-year event-free survival (EFS) and overall survival (OS) were 20.9 ± 5.3% and 22.1 ± 5.4%, respectively. Survival was associated with receipt of hematopoietic stem cell transplantation (HSCT) (hazard ratio [HR], 0.28), duration of first complete remission (CR1) (HR, 0.31 for > 12 months) and attainment of remission after relapse (HR, 4.03). Patients who achieved complete remission (CR) before HSCT, had an improved OS and EFS of 56.0 ± 11.8% and 50.5 ± 11.9%, respectively compared to those who underwent HSCT without CR (3-year OS and EFS of 10.0 ± 9.5%). Treatment failure after HSCT was predominantly because of disease recurrence (52%) followed by treatment-related mortality (10%). The prognosis of r/r ML-DS remains dismal even in the current treatment period and serve as a reference point for current prognostication and future interventional studies. Clinical trials aimed at improving the survival of patients with r/r ML-DS are needed.


Subject(s)
Down Syndrome , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Child , Retrospective Studies , Down Syndrome/complications , Down Syndrome/therapy , Recurrence
7.
Leuk Lymphoma ; 63(13): 3208-3216, 2022 12.
Article in English | MEDLINE | ID: mdl-36067507

ABSTRACT

The epidemiology of infant acute lymphoblastic leukemia (ALL), hypodiploid ALL, and mixed-phenotype acute leukemia (MPAL) in Canada is unknown. The main objective was to describe the prevalence, prognostic factors, and outcomes of three rare and high-risk ALL subtypes in Canada. This is a retrospective study using the Cancer in Young People-Canada (CYP-C) database. Event-free survival (EFS) and overall survival (OS) were described by the Kaplan-Meier method and compared using the log-rank test. Among 2626 children aged 0-14 years diagnosed with B-cell acute lymphoblastic leukemia (B-ALL) between 2001 and 2018, 227 (8.6%) patients were identified to be infant ALL (n = 139), hypodiploid ALL (n = 43), or MPAL (n = 45). The 5-year EFS/OS was significantly worse in the infant ALL subgroup compared to that of hypodiploid ALL and MPAL. For the entire cohort, presenting White blood cells (WBCs) ≥50 × 109/L was independently associated with worse EFS/OS.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Prognosis , Retrospective Studies , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/epidemiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Acute Disease , Phenotype
9.
Blood Adv ; 6(4): 1329-1341, 2022 02 22.
Article in English | MEDLINE | ID: mdl-34933343

ABSTRACT

The molecular hallmark of childhood acute lymphoblastic leukemia (ALL) is characterized by recurrent, prognostic genetic alterations, many of which are cryptic by conventional cytogenetics. RNA sequencing (RNA-seq) is a powerful next-generation sequencing technology that can simultaneously identify cryptic gene rearrangements, sequence mutations and gene expression profiles in a single assay. We examined the feasibility and utility of incorporating RNA-seq into a prospective multicenter phase 3 clinical trial for children with newly diagnosed ALL. The Dana-Farber Cancer Institute ALL Consortium Protocol 16-001 enrolled 173 patients with ALL who consented to optional studies and had samples available for RNA-seq. RNA-seq identified at least 1 alteration in 157 patients (91%). Fusion detection was 100% concordant with results obtained from conventional cytogenetic analyses. An additional 56 gene fusions were identified by RNA-seq, many of which confer prognostic or therapeutic significance. Gene expression profiling enabled further molecular classification into the following B-cell ALL (B-ALL) subgroups: high hyperdiploid (n = 36), ETV6-RUNX1/-like (n = 31), TCF3-PBX1 (n = 7), KMT2A-rearranged (KMT2A-R; n = 5), intrachromosomal amplification of chromosome 21 (iAMP21) (n = 1), hypodiploid (n = 1), Philadelphia chromosome (Ph)-positive/Ph-like (n = 16), DUX4-R (n = 11), PAX5 alterations (PAX5 alt; n = 11), PAX5 P80R (n = 1), ZNF384-R (n = 4), NUTM1-R (n = 1), MEF2D-R (n = 1), and others (n = 10). RNA-seq identified 141 nonsynonymous mutations in 93 patients (54%); the most frequent were RAS-MAPK pathway mutations. Among 79 patients with both low-density array and RNA-seq data for the Philadelphia chromosome-like gene signature prediction, results were concordant in 74 patients (94%). In conclusion, RNA-seq identified several clinically relevant genetic alterations not detected by conventional methods, which supports the integration of this technology into front-line pediatric ALL trials. This trial was registered at www.clinicaltrials.gov as #NCT03020030.


Subject(s)
Philadelphia Chromosome , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Gene Expression Profiling , Gene Rearrangement , Humans , Multicenter Studies as Topic , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prospective Studies
10.
Haematologica ; 107(1): 86-99, 2022 01 01.
Article in English | MEDLINE | ID: mdl-33375773

ABSTRACT

Chromosomal translocations involving KMT2A gene are one of the most common genetic alterations found in pediatric acute myeloid leukemias (AML) although the molecular mechanisms that initiate the disease remain incompletely defined. To elucidate these initiating events we have used a human model system of AML driven by the KMT2A-MLLT3 (KM3) fusion. More specifically, we investigated changes in DNA methylation, histone modifications, and chromatin accessibility at each stage of our model system and correlated these with expression changes. We observe the development of a profound hypomethylation phenotype in the early stages of leukemic transformation after KM3 addition along with loss of expression of stem cell associated genes along with skewed expression in other genes such as S100A8/9 implicated in leukemogenesis. In addition, early increases in the expression of the lysine demethylase KDM4B was functionally linked to these expression changes as well as other key transcription factors. Remarkably, our ATAC-seq data showed that there were relatively few leukemiaspecific changes and the vast majority corresponded to open chromatin regions and transcription factor clusters previously observed in other cell types. Integration of the gene expression and epigenetic changes revealed the adenylate cyclase gene ADCY9 as an essential gene in KM3-AML, and suggest the potential for autocrine signalling through the chemokine receptor CCR1 and CCL23 ligand. Together, our results suggest that KM3 induces subtle changes in the epigenome while co-opting the normal transcriptional machinery to drive leukemogenesis.


Subject(s)
Epigenesis, Genetic , Leukemia, Myeloid, Acute , Leukemia, Myeloid , Adenylyl Cyclases , Child , DNA Methylation , Histone-Lysine N-Methyltransferase , Humans , Jumonji Domain-Containing Histone Demethylases , Leukemia, Myeloid, Acute/genetics , Mutation , Myeloid-Lymphoid Leukemia Protein , Translocation, Genetic
11.
JAMA Oncol ; 7(12): 1806-1814, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34617981

ABSTRACT

IMPORTANCE: Prompt recognition of a child with a cancer predisposition syndrome (CPS) has implications for cancer management, surveillance, genetic counseling, and cascade testing of relatives. Diagnosis of CPS requires practitioner expertise, access to genetic testing, and test result interpretation. This diagnostic process is not accessible in all institutions worldwide, leading to missed CPS diagnoses. Advances in electronic health technology can facilitate CPS risk assessment. OBJECTIVE: To evaluate the diagnostic accuracy of a CPS prediction tool (McGill Interactive Pediatric OncoGenetic Guidelines [MIPOGG]) in identifying children with cancer who have a low or high likelihood of having a CPS. DESIGN, SETTING, AND PARTICIPANTS: In this international, multicenter diagnostic accuracy study, 1071 pediatric (<19 years of age) oncology patients who had a confirmed CPS (12 oncology referral centers) or who underwent germline DNA sequencing through precision medicine programs (6 centers) from January 1, 2000, to July 31, 2020, were studied. EXPOSURES: Exposures were MIPOGG application in patients with cancer and a confirmed CPS (diagnosed through routine clinical care; n = 413) in phase 1 and MIPOGG application in patients with cancer who underwent germline DNA sequencing (n = 658) in phase 2. Study phases did not overlap. Data analysts were blinded to genetic test results. MAIN OUTCOMES AND MEASURES: The performance of MIPOGG in CPS recognition was compared with that of routine clinical care, including identifying a CPS earlier than practitioners. The tool's test characteristics were calculated using next-generation germline DNA sequencing as the comparator. RESULTS: In phase 1, a total of 413 patients with cancer (median age, 3.0 years; range, 0-18 years) and a confirmed CPS were identified. MIPOGG correctly recognized 410 of 412 patients (99.5%) as requiring referral for CPS evaluation at the time of primary cancer diagnosis. Nine patients diagnosed with a CPS by a practitioner after their second malignant tumor were detected by MIPOGG using information available at the time of the first cancer. In phase 2, of 658 children with cancer (median age, 6.6 years; range, 0-18.8 years) who underwent comprehensive germline DNA sequencing, 636 had sufficient information for MIPOGG application. When compared with germline DNA sequencing for CPS detection, the MIPOGG test characteristics for pediatric-onset CPSs were as follows: sensitivity, 90.7%; specificity, 60.5%; positive predictive value, 17.6%; and negative predictive value, 98.6%. Tumor DNA sequencing data confirmed the MIPOGG recommendation for CPS evaluation in 20 of 22 patients with established cancer-CPS associations. CONCLUSIONS AND RELEVANCE: In this diagnostic study, MIPOGG exhibited a favorable accuracy profile for CPS screening and reduced time to CPS recognition. These findings suggest that MIPOGG implementation could standardize and rationalize recommendations for CPS evaluation in children with cancer.


Subject(s)
Genetic Testing , Neoplasms , Child , Child, Preschool , Early Detection of Cancer , Genetic Predisposition to Disease , Genetic Testing/methods , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Syndrome
12.
Bone Marrow Transplant ; 56(12): 2981-2989, 2021 12.
Article in English | MEDLINE | ID: mdl-34475524

ABSTRACT

Posttransplant leukemia detection before overt relapse is key to the success of immunotherapeutic interventions, as they are more efficient when leukemia burden is low. However, optimal schedule and monitoring methods are not well defined. We report the intensive bone marrow monitoring of minimal residual disease (MRD) using flow cytometry (FC) and nested reverse transcription polymerase chain reaction (RT-PCR) whenever a fusion transcript allowed it and chimerism by PCR at 11 timepoints in the first 2 years after transplant. Seventy-one transplants were performed in 59 consecutive children, for acute myeloid (n = 38), lymphoid (n = 31), or mixed-phenotype (n = 2) leukemia. MRD was monitored in 62 cases using FC (n = 58) and/or RT-PCR (n = 35). Sixty-seven percent of leukemia recurrences were detected before overt relapse, with a detection rate of 89% by RT-PCR and 40% by FC alone. Increased mixed chimerism was never the first evidence of recurrence. Two patients monitored by RT-PCR relapsed without previous MRD detection, one after missed scheduled evaluation and the other 4.7 years post transplant. Among the 22 cases with MRD detection without overt relapse, 19 received therapeutic interventions. Eight (42%) never relapsed. In conclusion, intensive marrow monitoring by RT-PCR effectively allows for early detection of posttransplant leukemia recurrence.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Chimerism , Hematopoietic Stem Cell Transplantation/methods , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics , Recurrence , Transplantation, Homologous
14.
Bone Marrow Transplant ; 56(8): 1937-1943, 2021 08.
Article in English | MEDLINE | ID: mdl-33824433

ABSTRACT

Umbilical cord blood transplantation (UCBT) has been used to treat malignant and non-malignant diseases. UCBT offers the advantages of easy procurement and acceptable partial HLA mismatches, but also shows delayed hematopoietic and immunological recoveries. We postulated that an intrabone (IB) infusion of cord blood could provide a faster short- and long-term engraftment in a pediatric population with malignant and non-malignant hematologic diseases. We conducted this phase I-II single arm, exploratory clinical trial (NCT01711788) from 2012 to 2016 in a single center. Fifteen patients aged from 1.9 to 16.4 years received an IB UCBT. Median time to neutrophils and platelet recoveries were 18 days (range: 13-36 days) and 42 days (range: 26-107 days), respectively. Rate of severe acute GVH grade was low, with only one patient with grade III aGVH. Relapse occurred in 5 patients (38.5%) and TRM occurred in 1 patient. This leads to 6 years EFS and OS of 66.7% and 80% respectively. In conclusion, IB UCBT is safe and well-tolerated in children and hematological recovery compared similarly to the results obtained with IV UCBT.


Subject(s)
Cord Blood Stem Cell Transplantation , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Child , Fetal Blood , Humans , Neoplasm Recurrence, Local
16.
Genes Chromosomes Cancer ; 59(2): 125-130, 2020 02.
Article in English | MEDLINE | ID: mdl-31515871

ABSTRACT

Infant acute lymphoblastic leukemias (ALL) are rare hematological malignancies occurring in children younger than 1 year of age, most frequently associated with KMT2A rearrangements (KMT2A-r). The smaller subset without KMT2A-r, which represents 20% of infant ALL cases, is poorly characterized. Here we report two cases of chemotherapy-sensitive non-KMT2A-r infant ALL. Transcriptome analyses revealed identical ACIN1-NUTM1 gene fusions in both cases, derived from cryptic chromosomal rearrangements undetected by standard cytogenetic approaches. Two isoforms of the gene fusion, joining exons 3 or 4 of ACIN1 to exon 3 of NUTM1, were identified. Both fusion transcripts contained the functional DNA-binding SAP (SAF-A/B, Acinus, and PIAS) domain of ACIN1 and most of NUTM1. The detection of the ACIN1-NUTM1 fusion by RT-PCR allowed the molecular monitoring of minimal residual disease in a clinical setting. Based on publicly available genomic datasets and literature review, we predict that NUTM1 gene fusions are recurrent events in infant ALL. As such, we propose two clinically relevant assays to screen for NUTM1 rearrangements in bone marrow cells, independent of the fusion partner: NUMT1 immunohistochemistry and NUTM1 RNA expression. In sum, our study identifies ACIN1-NUTM1 as a recurrent and possibly cryptic fusion in non-KMT2A-r infant ALL, provides clinical tools to screen for NUTM1-rearranged leukemia and contributes to the refinement of this new subgroup.


Subject(s)
Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Chromosome Aberrations , Cytogenetics , Gene Fusion , Gene Rearrangement/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Immunohistochemistry , Infant, Newborn , Leukemia, Myeloid, Acute/genetics , Male , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Neoplasm Proteins/metabolism , Nuclear Proteins/metabolism , Oncogene Proteins, Fusion/metabolism
17.
Blood Adv ; 3(21): 3307-3321, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31698461

ABSTRACT

Acute megakaryoblastic leukemia (AMKL) represents ∼10% of pediatric acute myeloid leukemia cases and typically affects young children (<3 years of age). It remains plagued with extremely poor treatment outcomes (<40% cure rates), mostly due to primary chemotherapy refractory disease and/or early relapse. Recurrent and mutually exclusive chimeric fusion oncogenes have been detected in 60% to 70% of cases and include nucleoporin 98 (NUP98) gene rearrangements, most commonly NUP98-KDM5A. Human models of NUP98-KDM5A-driven AMKL capable of faithfully recapitulating the disease have been lacking, and patient samples are rare, further limiting biomarkers and drug discovery. To overcome these impediments, we overexpressed NUP98-KDM5A in human cord blood hematopoietic stem and progenitor cells using a lentiviral-based approach to create physiopathologically relevant disease models. The NUP98-KDM5A fusion oncogene was a potent inducer of maturation arrest, sustaining long-term proliferative and progenitor capacities of engineered cells in optimized culture conditions. Adoptive transfer of NUP98-KDM5A-transformed cells into immunodeficient mice led to multiple subtypes of leukemia, including AMKL, that phenocopy human disease phenotypically and molecularly. The integrative molecular characterization of synthetic and patient NUP98-KDM5A AMKL samples revealed SELP, MPIG6B, and NEO1 as distinctive and novel disease biomarkers. Transcriptomic and proteomic analyses pointed to upregulation of the JAK-STAT signaling pathway in the model AMKL. Both synthetic models and patient-derived xenografts of NUP98-rearranged AMKL showed in vitro therapeutic vulnerability to ruxolitinib, a clinically approved JAK2 inhibitor. Overall, synthetic human AMKL models contribute to defining functional dependencies of rare genotypes of high-fatality pediatric leukemia, which lack effective and rationally designed treatments.


Subject(s)
Biomarkers , Disease Models, Animal , Leukemia, Megakaryoblastic, Acute/etiology , Leukemia, Megakaryoblastic, Acute/pathology , Nuclear Pore Complex Proteins/genetics , Oncogene Proteins, Fusion/genetics , Retinoblastoma-Binding Protein 2/genetics , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Computational Biology/methods , Disease Susceptibility , Gene Expression , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Immunophenotyping , Leukemia, Megakaryoblastic, Acute/therapy , Mice , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Nuclear Pore Complex Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Retinoblastoma-Binding Protein 2/metabolism , Xenograft Model Antitumor Assays
18.
Front Oncol ; 9: 772, 2019.
Article in English | MEDLINE | ID: mdl-31475115

ABSTRACT

Shwachman-Diamond syndrome (SDS) is a rare and systemic disease mostly caused by mutations in the SBDS gene and characterized by pancreatic insufficiency, skeletal abnormalities, and a bone marrow dysfunction. In addition, SDS patients are predisposed to develop myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), typically during adulthood and associated with TP53 mutations. Although most SDS diagnoses are established in childhood, the nature and frequency of serial bone marrow cell investigations during the patients' lifetime remain a debatable topic. The precise molecular mechanisms leading to AML progression in SDS patients have not been fully elucidated because the patient cohorts are small and most disease monitoring is conducted using standard histological and cytogenetic approaches. Here we report a rare case of a patient with SDS who was diagnosed with AML at 5 years of age and survived. Intermittent neutropenia preceded the AML diagnostic but serial bone marrow monitoring according to the standard of care revealed no cytogenetic anomalies nor signs of clonal hematopoiesis. Using next generation sequencing approaches to find cytogenetically cryptic pathogenic mutations, we identified the cancer hotspot mutation c.394C>T/p.Arg132Cys in IDH1 with high variant allelic frequency in bone marrow cells, suggesting clonal expansion of a major leukemic clone karyotypically normal, in the SDS-associated AML. The mutation was somatic and likely occurred at the leukemic transformation stage, as it was not detected in a matched normal tissue nor in bone marrow smear prior to AML diagnosis. Gain-of-function mutations in IDH1, such as c.394C>T/p.Arg132Cys, create a neo-activity of isocitrate dehydrogenase 1 converting α-ketoglutarate into the oncometabolite D-2-hydroxyglutarate, inhibiting α-ketoglutarate-dependent enzymes, such as histone and DNA demethylases. Overall, our results suggest that along with previously described abnormalities such as TP53 mutations or monosomy7, 7q-, which are all absent in this patient, additional mechanisms including IDH1 mutations drive SDS-related AML and are likely associated with variable outcomes. Sensitive techniques complementary to standard cytogenetics, such as unbiased or targeted panel-based next generation sequencing approaches, warrant testing for monitoring of myelodysplasia, clonal hematopoiesis, and leukemia in the context SDS. Such analyses would also assist treatment decisions and allow to gain insight into the disease biology.

19.
Exp Hematol ; 74: 1-12, 2019 06.
Article in English | MEDLINE | ID: mdl-31154068

ABSTRACT

Leukemia is a complex genetic disease caused by errors in differentiation, growth, and apoptosis of hematopoietic cells in either lymphoid or myeloid lineages. Large-scale genomic characterization of thousands of leukemia patients has produced a tremendous amount of data that have enabled a better understanding of the differences between adult and pediatric patients. For instance, although phenotypically similar, pediatric and adult myeloid leukemia patients differ in their mutational profiles, typically involving either chromosomal translocations or recurrent single-base-pair mutations, respectively. To elucidate the molecular mechanisms underlying the biology of this cancer, continual efforts have been made to develop more contextually and biologically relevant experimental models. Leukemic cell lines, for example, provide an inexpensive and tractable model but often fail to recapitulate critical aspects of tumor biology. Likewise, murine leukemia models of leukemia have been highly informative but also do not entirely reproduce the human disease. More recent advances in the development of patient-derived xenografts (PDXs) or human models of leukemias are poised to provide a more comprehensive, and biologically relevant, approach to directly assess the impact of the in vivo environment on human samples. In this review, the advantages and limitations of the various current models used to functionally define the genetic requirements of leukemogenesis are discussed.


Subject(s)
Cell Differentiation , Leukemia, Myeloid , Neoplasms, Experimental , Translocation, Genetic , Adolescent , Animals , Child , Child, Preschool , Female , Heterografts , Humans , Infant , Infant, Newborn , Leukemia, Myeloid/genetics , Leukemia, Myeloid/pathology , Leukemia, Myeloid/therapy , Male , Mice , Neoplasm Transplantation , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy
20.
JAMA Netw Open ; 2(4): e192906, 2019 04 05.
Article in English | MEDLINE | ID: mdl-31026031

ABSTRACT

Importance: Little progress in pediatric cancer treatment has been noted in the past decade, urging the development of novel therapeutic strategies for adolescents and children with hard-to-treat cancers. Use of comprehensive molecular profiling in the clinical management of children and adolescents with cancer appears a suitable approach to improve patient care and outcomes, particularly for hard-to-treat cases. Objective: To assess the feasibility of identifying potentially actionable mutations using next-generation sequencing-based assays in a clinically relevant time frame. Design, Setting, and Participants: This diagnostic study reports the results of the TRICEPS study, a prospective genome sequencing study conducted in Québec, Canada. Participants, aged 18 years or younger at diagnosis, with refractory or relapsed childhood and adolescent cancers were enrolled from April 2014 through January 2018. Whole-exome sequencing (WES) of matched tumor normal samples and RNA sequencing of tumor were performed to identify single-nucleotide variants, fusion transcripts, differential gene expression, and copy number alterations. Results reviewed by a team of experts were further annotated, synthesized into a report, and subsequently discussed in a multidisciplinary molecular tumor board. Main Outcomes and Measures: Molecular profiling of pediatric patients with hard-to-treat cancer, identification of actionable and targetable alteration needed for the management of these patients, and proposition of targeted and personalized novel therapeutic strategies. Results: A total of 84 patients with hard-to-treat cancers were included in the analysis. These patients had a mean (range) age of 10.1 (1-21) years and a similar proportion of male (45 [54%]) and female (39 [46%]). Sixty-two patients (74%) had suitable tissues for multimodal molecular profiling (WES and RNA sequencing). The process from DNA or RNA isolation to genomic sequencing and data analysis steps took a median (range) of 24 (4-41) days. Potentially actionable alterations were identified in 54 of 62 patients (87%). Actions were taken in 22 of 54 patients (41%), and 18 (33%) either were on a second or third line of treatment, were in remission, or had stable disease and thus no actions were taken. Conclusions and Relevance: Incorporating genomic sequencing into the management of hard-to-treat childhood and adolescent cancers appeared feasible; molecular profiling may enable the identification of potentially actionable alterations with clinical implications for most patients, including targeted therapy and clinically relevant information of diagnostic, prognostic, and monitoring significance.


Subject(s)
Exome Sequencing/methods , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Sequence Analysis, RNA/methods , Adolescent , Child , Feasibility Studies , Female , Humans , Male , Mutation , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL