Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 652(Pt A): 34-40, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37591081

ABSTRACT

Bismuth-based double perovskite Cs2AgBiBr6 shows promise as a photodetection material. However, its detection performance and application are limited by high-exciton binding energy and poor carrier mobility. In this study, we address these limitations by delicately designing a solution-based method for incorporating A-site Rubidium (Rb) substitution into Cs2AgBiBr6 double perovskite films. The introduction of Rb resulted in a significant decrease in trap defect density and an improvement in film quality. The trap-filled limit voltage (VTFL) of pure and Rb-doped CABB film is determined to be 1.71 V and 0.48 V, respectively. Subsequently, by introducing an ultrathin atomic-layer-deposited (ALD) TiO2 films, the fabricated CABB photodetectors exhibit significantly improved photoresponse performance. The response speed and -3dB bandwidth are boosted from ∼93 ms to ∼350 µs and broadened from 1.4 kHz to 17 kHz, respectively. Density Functional Theory (DFT) calculations indicate Rb-substitution shortens the bond length and weaken exciton binding energy. Furthermore, we demonstrate a wireless near ultraviolet (UV) light communication system using CABB photodetectors as light receivers. Our findings provide an efficient approach to utilize A-site cation substitution as a tuning parameter for photodetection in high-exciton binding energy perovskite materials, thereby extending the potential applications of other functional perovskites.

2.
Light Sci Appl ; 12(1): 43, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36788229

ABSTRACT

There are two primary types of photoreceptor cells in the human eye: cone cells and rod cells that enable color vision and night vision, respectively. Herein, inspired by the function of human visual cells, we develop a high-resolution perovskite-based color camera using a set of narrowband red, green, blue, and broadband white perovskite photodetectors as imaging sensors. The narrowband red, green, and blue perovskite photodetectors with color perceptions mimic long-, medium-, and short-wavelength cones cells to achieve color imaging ability. Also, the broadband white perovskite photodetector with better detectivity mimics rod cells to improve weak-light imaging ability. Our perovskite-based camera, combined with predesigned pattern illumination and image reconstruction technology, is demonstrated with high-resolution color images (up to 256 × 256 pixels) in diffuse mode. This is far beyond previously reported advanced perovskite array image sensors that only work in monochrome transmission mode. This work shows a new approach to bio-inspired cameras and their great potential to strongly mimic the ability of the natural eye.

3.
Nanomaterials (Basel) ; 12(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35010073

ABSTRACT

Graphene has been widely used in photodetectors; however its photoresponsivity is limited due to the intrinsic low absorption of graphene. To enhance the graphene absorption, a waveguide structure with an extended interaction length and plasmonic resonance with light field enhancement are often employed. However, the operation bandwidth is narrowed when this happens. Here, a novel graphene-based all-fiber photodetector (AFPD) was demonstrated with ultrahigh responsivity over a full near-infrared band. The AFPD benefits from the gold-enhanced absorption when an interdigitated Au electrode is fabricated onto a Graphene-PMMA film covered over a side-polished fiber (SFP). Interestingly, the AFPD shows a photoresponsivity of >1 × 104 A/W and an external quantum efficiency of >4.6 × 106% over a broadband region of 980-1620 nm. The proposed device provides a simple, low-cost, efficient, and robust way to detect optical fiber signals with intriguing capabilities in terms of distributed photodetection and on-line power monitoring, which is highly desirable for a fiber-optic communication system.

4.
Small ; 16(52): e2005226, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33258312

ABSTRACT

Anion exchange offers great flexibility and high precision in phase control, compositional engineering, and optoelectronic property tuning. Different from previous successful anion exchange process in liquid solution, herein, a vapor-phase anion-exchange strategy is developed to realize the precise phase and bandgap control of large-scale inorganic perovskites by using gas injection cycle, producing some perovskites such as CsPbCl3 which has never been reported in thin film morphology. Ab initio calculations also provide the insightful mechanism to understand the impact of anion exchange on tuning the electronic properties and optimizing the structural stability. Furthermore, because of precise control of specific atomic concentrations, intriguing tunable photoluminescence is observed and photodetectors with tunable photoresponse edge from green to ultraviolet light can be realized accurately with an ultrahigh spectral resolution of 1 nm. Therefore, a new, universal vapor-phase anion exchange method is offered for inorganic perovskite with fine-tunable optoelectronic properties.

5.
ACS Appl Mater Interfaces ; 11(46): 43376-43382, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31663717

ABSTRACT

Cuprite, nominally cuprous oxide (Cu2O) but more correctly Cu2-xO, is widely used in optoelectronic applications because of its natural p-type, nontoxicity, and abundant availability. However, the photoresponsivity of Cu2O/Si photodetectors (PDs) has been limited by the lack of high-quality Cu2-xO films. Herein, we report a facile room-temperature solution method to prepare high-quality Cu2-xO films with controllable x value which were used as hole selective transport layers in crystalline n-type silicon-based heterojunction PDs. The detection performance of Cu2-xO/Si PDs exhibits a remarkable improvement via reducing the x value, resulting in the optimized PDs with high responsivity of 417 mA W-1 and fast response speed of 1.3 µs. Furthermore, the performance of the heterojunction PDs can be further improved by designing the pyramidal silicon structure, with enhanced responsivity of 600 mA W-1 and response speed of 600 ns. The superior photodetecting performance of Cu2-xO/n-Si heterojunctions is attributed to (i) the matched energy level band alignment, (ii) the low trap states in high-quality Cu2O thin films, and (iii) the excellent light trapping. We expect that the low-cost, highly efficient solution process would be of great convenience for large-scale fabrication of the Cu2-xO thin films and broaden the applications of Cu2-xO-based optoelectronic devices.

6.
ACS Appl Mater Interfaces ; 11(35): 32097-32107, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31408610

ABSTRACT

Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) thin film is a promising material for optoelectronic devices. In this work, we fabricate Mo/CZTSSe/CdS/ZnO/ITO (ITO, indium tin oxide) heterojunction photodetectors with favorable self-powered characteristics. The photodetector exhibits exceptional high-frequency photoresponse performance whose -3 dB bandwidth and rise/decay time have reached 1 MHz and 240/340 ns, respectively. For further improvement, ultrathin Al2O3 layer prepared via atomic layer deposition (ALD) process is introduced at the Mo/CZTSSe interface. The influence of ALD-Al2O3 layer thickness and its role on the photoresponse performance are investigated in detail. The interfacial layer proved to serve as a protective layer preventing selenization of Mo electrode, resulting in the reduction of MoSe2 transition layer and the decrease of series resistance of the device. Accordingly, the -3 dB bandwidth is remarkably extended to 3.5 MHz while the rise/decay time is dramatically improved to 60/77 ns with 16 cycles of ALD-Al2O3 layer, which is 4-5 orders of magnitude faster than the other reported CZTSSe photodetectors. Simultaneously, it is revealed that the ALD-Al2O3 interfacial layer acts as an electron blocking layer which leads to the effective suppression of carrier recombination at the rear surface. Consequently, the responsivity and detectivity are enhanced in the entire range while the maximum values are up to 0.39 AW-1 and 2.04 × 1011 Jones with 8 cycles of ALD-Al2O3, respectively. Finally, the CZTSSe photodetector is successfully integrated into a visible light communication system and obtains a satisfying transfer rate of 2 Mbps. These results indicate the satisfying performance of CZTSSe-based thin film photodetectors with great potential applications for communication.

7.
Small ; 15(36): e1902135, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31322829

ABSTRACT

Self-powered photodetectors (PDs) based on inorganic metal halide perovskites are regarded as promising alternatives for the next generation of photodetectors. However, uncontrollable film growth and sluggish charge extraction at interfaces directly limit the sensitivity and response speed of perovskite-based photodetectors. Herein, by assistance of an atomic layer deposition (ALD) technique, CsPbBr3 perovskite thin films with preferred orientation and enlarged grain size are obtained on predeposited interfacial modification layers. Thanks to improved film quality and double side interfacial engineering, the optimized CsPbBr3 (Al2 O3 /CsPbBr3 /TiO2 , ACT) perovskite PDs exhibit outstanding performance with ultralow dark current of 10-11 A, high detectivity of 1.88 × 1013 Jones and broad linear dynamic range (LDR) of 172.7 dB. Significantly, excellent long-term environmental stability (ambient conditions >100 d) and flexibility stability (>3000 cycles) are also achieved. The remarkable performance is credited to the synergistic effects of high carrier conductivity and collection efficiency, which is assisted by ALD modification layers. Finally, the ACT PDs are successfully integrated into a visible light communication system as a light receiver on transmitting texts, showing a bit rate as high as 100 kbps. These results open the window of high performance all-inorganic halide perovskite photodetectors and extends to rational applications for optical communication.

8.
ACS Appl Mater Interfaces ; 11(22): 20157-20166, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31070353

ABSTRACT

The Cu(In,Ga)Se2 (CIGS) thin film has been commercialized as solar cells with great success, but its application for photodetectors still faces some practical challenges, including low detectivity and long response time. In this paper, the structure of the Mo/CIGS/CdS/ZnO/ITO heterojunction has been fabricated, and satisfactory performances of high detectivity and fast response time have been achieved by suppressing the dark current and enhancing the carrier mobility. The controllable growth of CIGS grains is accomplished through optimizing the selenization process, demonstrating that bigger grain sizes resulted in higher carrier mobility and better response characteristics. Particularly, the high rise/decay speed of 3.40/6.46 µs is achieved. Furthermore, the interface of the CIGS/CdS heterojunction has been modified by the Al2O3 layer via the atomic-layer deposition (ALD) process. The dark current of the device is effectively suppressed by the ALD-Al2O3 layer, which remarkably drops from ∼10-7 to ∼10-9 A. As a consequence, the detectivity rises from 3.08 × 1011 to 1.84 × 1012 Jones. In addition, the ALD-Al2O3 layer shows a protective effect as well, which is positive for photoelectrical conversion. Besides, the wide linear dynamic range of 102.1 dB and large -3 dB bandwidth of 78 kHz are acquired. This work suggests that the CIGS-based heterojunction has great potential for high-performance thin-film photodetectors.

SELECTION OF CITATIONS
SEARCH DETAIL
...