Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Laryngoscope ; 134(5): 2444-2448, 2024 May.
Article in English | MEDLINE | ID: mdl-37983867

ABSTRACT

OBJECTIVE: Surgical plume has known potential occupational health hazards. This study compares nanoparticle concentrations in surgical plumes generated between different pediatric tonsillectomy surgical techniques and assesses the efficacy of mitigation measures. METHODS: This is a cross-sectional study performed at a tertiary care academic center. Extracapsular or intracapsular tonsillectomy was performed in 60 patients using four techniques and in 10 additional patients using mitigation measures. Two nanoparticle counters were used to measure particulate concentrations: CPC™ and DiSCmini™. Tonsillectomy techniques included: (1) microdebrider (MD), (2) Bovie with manual suctioning by an assistant (B), (3) Bovie with built-in smoke evacuation system (BS), and (4) Coblator™ (CB). An additional Yankauer suction was used in the mitigation groups (BSY) and (CBY). Comparative analysis was performed using one-way ANOVA on ranks and pairwise comparisons between the groups. RESULTS: The mean concentrations (particles/cm3) and coefficient of variants for the DiSCmini particulate counter were MD: 5140 (1.6), B: 30700 (1.5), BS: 25001 (0.8), CB: 54814 (1.7), CBY: 2395 (1.3) and BSY: 11552 (1.0). Mean concentrations for the CPC particulate counter were MD: 1223 (1.4), B: 3405 (0.7), BS: 5002 (0.9), CB: 13273 (1.0), CBY: 1048 (1.2) and BSY: 3046 (0.6). The lowest mean concentrations were noted in cases using MD and the highest in cases using CB. However, after mitigation, CBY had the lowest overall levels. CONCLUSION: Tonsillectomy technique does impact the levels of nanoparticles emitted within the surgical plume, which may present an occupational hazard for operating room personnel. LEVEL OF EVIDENCE: 3 Laryngoscope, 134:2444-2448, 2024.


Subject(s)
Tonsillectomy , Child , Humans , Tonsillectomy/methods , Cross-Sectional Studies , Adenoidectomy , Electrosurgery , Electrocoagulation/methods , Dust
2.
J Occup Environ Hyg ; 18(12): 547-554, 2021 12.
Article in English | MEDLINE | ID: mdl-34643481

ABSTRACT

Respirable Crystalline Silica (RCS) is a hazardous substance with known effects that can be well correlated with exposure levels that still persist in many traditional sectors, such as construction or stone processing. In the past decade, exposure scenarios for RCS have been found in the sector of artificial stone processing. The aim of this study is to evaluate the levels of RCS in facilities specialized in the production of artificial stone countertops and other accessories for the furnishing of kitchens, bathrooms, and offices after the introduction of some preventive technical measures such as wet processing or local exhaust ventilation systems. The study involved 51 subjects in four facilities. Personal silica exposure assessment was carried out using GS3 cyclones positioned in the breathing zone during the work shift. Quantitative determination of silica was carried out by X-ray diffraction analysis. Respirable dust levels were in the range 0.046-1.154 mg/m3 with RCS levels within the range <0.003-0.098 mg/m3. The highest exposure was found in dry finishing operations. Although there was a remarkable reduction in RCS exposure levels compared to what was observed in the past before the introduction of preventive measures, the data still showed hazardous exposure levels for some of the monitored activities.


Subject(s)
Air Pollutants, Occupational , Occupational Exposure , Air Pollutants, Occupational/analysis , Dust/analysis , Humans , Inhalation Exposure/analysis , Occupational Exposure/analysis , Silicon Dioxide/analysis
3.
Part Fibre Toxicol ; 17(1): 62, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33287860

ABSTRACT

BACKGROUND: Carbon nanotubes and nanofibers (CNT/F) have known toxicity but simultaneous comparative studies of the broad material class, especially those with a larger diameter, with computational analyses linking toxicity to their fundamental material characteristics was lacking. It was unclear if all CNT/F confer similar toxicity, in particular, genotoxicity. Nine CNT/F (MW #1-7 and CNF #1-2), commonly found in exposure assessment studies of U.S. facilities, were evaluated with reported diameters ranging from 6 to 150 nm. All materials were extensively characterized to include distributions of physical dimensions and prevalence of bundled agglomerates. Human bronchial epithelial cells were exposed to the nine CNT/F (0-24 µg/ml) to determine cell viability, inflammation, cellular oxidative stress, micronuclei formation, and DNA double-strand breakage. Computational modeling was used to understand various permutations of physicochemical characteristics and toxicity outcomes. RESULTS: Analyses of the CNT/F physicochemical characteristics illustrate that using detailed distributions of physical dimensions provided a more consistent grouping of CNT/F compared to using particle dimension means alone. In fact, analysis of binning of nominal tube physical dimensions alone produced a similar grouping as all characterization parameters together. All materials induced epithelial cell toxicity and micronuclei formation within the dose range tested. Cellular oxidative stress, DNA double strand breaks, and micronuclei formation consistently clustered together and with larger physical CNT/F dimensions and agglomerate characteristics but were distinct from inflammatory protein changes. Larger nominal tube diameters, greater lengths, and bundled agglomerate characteristics were associated with greater severity of effect. The portion of tubes with greater nominal length and larger diameters within a sample was not the majority in number, meaning a smaller percentage of tubes with these characteristics was sufficient to increase toxicity. Many of the traditional physicochemical characteristics including surface area, density, impurities, and dustiness did not cluster with the toxicity outcomes. CONCLUSION: Distributions of physical dimensions provided more consistent grouping of CNT/F with respect to toxicity outcomes compared to means only. All CNT/F induced some level of genotoxicity in human epithelial cells. The severity of toxicity was dependent on the sample containing a proportion of tubes with greater nominal lengths and diameters.


Subject(s)
Air Pollutants/toxicity , Nanofibers/toxicity , Nanotubes, Carbon/toxicity , Air Pollutants/chemistry , DNA Damage , Epithelial Cells , Humans , Inhalation Exposure , Nanofibers/chemistry , Nanotubes, Carbon/chemistry , Particle Size , Surface Properties , United States
4.
Article in English | MEDLINE | ID: mdl-32580452

ABSTRACT

Artificial stone is increasing in popularity in construction applications, including commercial and residential countertops. Eco-friendliness, durability, and resistance to staining, make artificial stone attractive to consumers. Health concerns have arisen during manufacturing of artificial stone due to increased incidence of silicosis after relatively short exposure. Three artificial stone samples (A, B, and C) and one natural granite sample were subjected to cutting and grinding in a controlled environment. Gravimetric analysis, X-Ray diffraction, and scanning electron microscopy with energy dispersive spectroscopy were employed to determine crystalline silica concentrations and particle morphology of bulk and respirable particles. Silica content of bulk dust from artificial samples A and B was 91%, sample C was <10%, while granite was 31%. Silica percent in the respirable fraction for samples A and B was 53% and 54%, respectively, while sample C was <5% and granite was 8%. Number concentrations for samples A and B were mainly in the nano-fraction, indicating potential for translocation of silica particles to other organs outside of the lungs. Respirable dust concentrations inside the chamber were well above Occupational Safety and Health Administration standards for all materials, indicating that confined-space exposures require ventilation to lower risks of acute silicosis regardless of the nature of the stone.


Subject(s)
Air Pollutants, Occupational , Manufacturing and Industrial Facilities , Occupational Exposure , Silicon Dioxide , Silicosis , Air Pollutants, Occupational/toxicity , Dust , Humans , Inhalation Exposure , Silicon Dioxide/toxicity , Silicosis/epidemiology , Ventilation
5.
Environ Sci Nano ; 7: 1539-1553, 2020 May 21.
Article in English | MEDLINE | ID: mdl-37205161

ABSTRACT

Manufacturing, processing, use, and disposal of nanoclay-enabled composites potentially lead to the release of nanoclay particles from the polymer matrix in which they are embedded; however, exposures to airborne particles are poorly understood. The present study was conducted to characterize airborne particles released during sanding of nanoclay-enabled thermoplastic composites. Two types of nanoclay, Cloisite® 25A and Cloisite® 93A, were dispersed in polypropylene at 0%, 1%, and 4% loading by weight. Zirconium aluminum oxide (P100/P180 grits) and silicon carbide (P120/P320 grits) sandpapers were used to abrade composites in controlled experiments followed by real-time and offline particle analyses. Overall, sanding the virgin polypropylene with zirconium aluminum oxide sandpaper released more particles compared to silicon carbide sandpaper, with the later exhibiting similar or lower concentrations than that of polypropylene. Thus, a further investigation was performed for the samples collected using the zirconium aluminum oxide sandpaper. The 1% 25A, 1% 93A, and 4% 93A composites generated substantially higher particle number concentrations (1.3-2.6 times) and respirable mass concentrations (1.2-2.3 times) relative to the virgin polypropylene, while the 4% 25A composite produced comparable results, regardless of sandpaper type. It was observed that the majority of the inhalable particles were originated from composite materials with a significant number of protrusions of nanoclay (18-59%). These findings indicate that the percent loading and dispersion of nanoclay in the polypropylene modified the mechanical properties and thus, along with sandpaper type, affected the number of particles released during sanding, implicating the cause of potential adverse health effects.

6.
Part Fibre Toxicol ; 16(1): 36, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31590690

ABSTRACT

BACKGROUND: The unique physicochemical properties of multi-walled carbon nanotubes (MWCNT) have led to many industrial applications. Due to their low density and small size, MWCNT are easily aerosolized in the workplace making respiratory exposures likely in workers. The International Agency for Research on Cancer designated the pristine Mitsui-7 MWCNT (MWCNT-7) as a Group 2B carcinogen, but there was insufficient data to classify all other MWCNT. Previously, MWCNT exposed to high temperature (MWCNT-HT) or synthesized with nitrogen (MWCNT-ND) have been found to elicit attenuated toxicity; however, their genotoxic and carcinogenic potential are not known. Our aim was to measure the genotoxicity of MWCNT-7 compared to these two physicochemically-altered MWCNTs in human lung epithelial cells (BEAS-2B & SAEC). RESULTS: Dose-dependent partitioning of individual nanotubes in the cell nuclei was observed for each MWCNT material and was greatest for MWCNT-7. Exposure to each MWCNT led to significantly increased mitotic aberrations with multi- and monopolar spindle morphologies and fragmented centrosomes. Quantitative analysis of the spindle pole demonstrated significantly increased centrosome fragmentation from 0.024-2.4 µg/mL of each MWCNT. Significant aneuploidy was measured in a dose-response from each MWCNT-7, HT, and ND; the highest dose of 24 µg/mL produced 67, 61, and 55%, respectively. Chromosome analysis demonstrated significantly increased centromere fragmentation and translocations from each MWCNT at each dose. Following 24 h of exposure to MWCNT-7, ND and/or HT in BEAS-2B a significant arrest in the G1/S phase in the cell cycle occurred, whereas the MWCNT-ND also induced a G2 arrest. Primary SAEC exposed for 24 h to each MWCNT elicited a significantly greater arrest in the G1 and G2 phases. However, SAEC arrested in the G1/S phase after 72 h of exposure. Lastly, a significant increase in clonal growth was observed one month after exposure to 0.024 µg/mL MWCNT-HT & ND. CONCLUSIONS: Although MWCNT-HT & ND cause a lower incidence of genotoxicity, all three MWCNTs cause the same type of mitotic and chromosomal disruptions. Chromosomal fragmentation and translocations have not been observed with other nanomaterials. Because in vitro genotoxicity is correlated with in vivo genotoxic response, these studies in primary human lung cells may predict the genotoxic potency in exposed human populations.


Subject(s)
DNA Damage , Epithelial Cells/drug effects , Hot Temperature , Lung/drug effects , Nanotubes, Carbon/toxicity , Nitrogen/chemistry , Cell Cycle , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Epithelial Cells/pathology , Humans , Lung/pathology , Nanotubes, Carbon/chemistry , Particle Size , Surface Properties
7.
ACS Nano ; 11(9): 8849-8863, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28759202

ABSTRACT

Pulmonary toxicity studies on carbon nanotubes focus primarily on as-produced materials and rarely are guided by a life cycle perspective or integration with exposure assessment. Understanding toxicity beyond the as-produced, or pure native material, is critical, due to modifications needed to overcome barriers to commercialization of applications. In the first series of studies, the toxicity of as-produced carbon nanotubes and their polymer-coated counterparts was evaluated in reference to exposure assessment, material characterization, and stability of the polymer coating in biological fluids. The second series of studies examined the toxicity of aerosols generated from sanding polymer-coated carbon-nanotube-embedded or neat composites. Postproduction modification by polymer coating did not enhance pulmonary injury, inflammation, and pathology or in vitro genotoxicity of as-produced carbon nanotubes, and for a particular coating, toxicity was significantly attenuated. The aerosols generated from sanding composites embedded with polymer-coated carbon nanotubes contained no evidence of free nanotubes. The percent weight incorporation of polymer-coated carbon nanotubes, 0.15% or 3% by mass, and composite matrix utilized altered the particle size distribution and, in certain circumstances, influenced acute in vivo toxicity. Our study provides perspective that, while the number of workers and consumers increases along the life cycle, toxicity and/or potential for exposure to the as-produced material may greatly diminish.


Subject(s)
Nanotubes, Carbon/toxicity , Occupational Exposure/adverse effects , Aerosols/chemistry , Aerosols/toxicity , Animals , Humans , Lung/pathology , Male , Mice, Inbred C57BL , Mutagens/chemistry , Mutagens/toxicity , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Polymers/chemistry , Polymers/toxicity
8.
Part Fibre Toxicol ; 11: 6, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24479647

ABSTRACT

Carbon nanotubes are commercially-important products of nanotechnology; however, their low density and small size makes carbon nanotube respiratory exposures likely during their production or processing. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to single-walled carbon nanotubes (SWCNT). In this study, we examined whether multi-walled carbon nanotubes (MWCNT) cause mitotic spindle damage in cultured cells at doses equivalent to 34 years of exposure at the NIOSH Recommended Exposure Limit (REL). MWCNT induced a dose responsive increase in disrupted centrosomes, abnormal mitotic spindles and aneuploid chromosome number 24 hours after exposure to 0.024, 0.24, 2.4 and 24 µg/cm² MWCNT. Monopolar mitotic spindles comprised 95% of disrupted mitoses. Three-dimensional reconstructions of 0.1 µm optical sections showed carbon nanotubes integrated with microtubules, DNA and within the centrosome structure. Cell cycle analysis demonstrated a greater number of cells in S-phase and fewer cells in the G2 phase in MWCNT-treated compared to diluent control, indicating a G1/S block in the cell cycle. The monopolar phenotype of the disrupted mitotic spindles and the G1/S block in the cell cycle is in sharp contrast to the multi-polar spindle and G2 block in the cell cycle previously observed following exposure to SWCNT. One month following exposure to MWCNT there was a dramatic increase in both size and number of colonies compared to diluent control cultures, indicating a potential to pass the genetic damage to daughter cells. Our results demonstrate significant disruption of the mitotic spindle by MWCNT at occupationally relevant exposure levels.


Subject(s)
Mutagens , Nanotubes, Carbon/toxicity , Occupational Exposure , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Survival , Cells, Cultured , Chromosomes/drug effects , DNA Damage , Environmental Monitoring , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Flow Cytometry , Humans , In Situ Hybridization, Fluorescence , Microscopy, Atomic Force , Mitosis/drug effects , Spectrometry, X-Ray Emission , Spectrum Analysis, Raman , Spindle Apparatus/drug effects , Stem Cells
9.
Aerosol Sci Technol ; 48(12): 1254-1263, 2014.
Article in English | MEDLINE | ID: mdl-26848207

ABSTRACT

A laboratory study was conducted to determine the mass of total Cr, Cr(VI), Mn, and Ni in 15 size fractions for mild and stainless steel gas-metal arc welding (GMAW) fumes. Samples were collected using a nano multi orifice uniform deposition impactor (MOUDI) with polyvinyl chloride filters on each stage. The filters were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography. Limits of detection (LODs) and quantitation (LOQs) were experimentally calculated and percent recoveries were measured from spiked metals in solution and dry, certified welding-fume reference material. The fraction of Cr(VI) in total Cr was estimated by calculating the ratio of Cr(VI) to total Cr mass for each particle size range. Expected, regional deposition of each metal was estimated according to respiratory-deposition models. The weight percent (standard deviation) of Mn in mild steel fumes was 9.2% (6.8%). For stainless steel fumes, the weight percentages were 8.4% (5.4%) for total Cr, 12.2% (6.5%) for Mn, 2.1% (1.5%) for Ni and 0.5% (0.4%) for Cr(VI). All metals presented a fraction between 0.04 and 0.6 µm. Total Cr and Ni presented an additional fraction <0.03 µm. On average 6% of the Cr was found in the Cr(VI) valence state. There was no statistical difference between the smallest and largest mean Cr(VI) to total Cr mass ratio (p-value D 0.19), hence our analysis does not show that particle size affects the contribution of Cr(VI) to total Cr. The predicted total respiratory deposition for the metal particles was ∼25%. The sites of principal deposition were the head airways (7-10%) and the alveolar region (11-14%). Estimated Cr(VI) deposition was highest in the alveolar region (14%).

10.
J Nanopart Res ; 15(4): 1504, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23596358

ABSTRACT

ABSTRACT: Nanocomposite materials may be considered as a low-risk application of nanotechnology, if the nanofillers remain embedded throughout the life-cycle of the products in which they are embedded. We hypothesize that release of free CNTs occurs by a combination of mechanical stress and chemical degradation of the polymer matrix. We experimentally address limiting cases: Mechanically released fragments may show tubular protrusions on their surface. Here we identify these protrusions unambiguously as naked CNTs by chemically resolved microscopy and a suitable preparation protocol. By size-selective quantification of fragments we establish as a lower limit that at least 95 % of the CNTs remain embedded. Contrary to classical fiber composite approaches, we link this phenomenon to matrix materials with only a few percent elongation at break, predicting which materials should still cover their CNT nanofillers after machining. Protruding networks of CNTs remain after photochemical degradation of the matrix, and we show that it takes the worst case combinations of weathering plus high-shear wear to release free CNTs in the order of mg/m2/year. Synergy of chemical degradation and mechanical energy input is identified as the priority scenario of CNT release, but its lab simulation by combined methods is still far from real-world validation.

11.
J Nanopart Res ; 14(11)2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23204914

ABSTRACT

The emission of the airborne particles from epoxy resin test sticks with different CNT loadings and two commercial products were characterized while sanding with three grit sizes and three disc sander speeds. The total number concentrations, respirable mass concentrations, and particle size number/mass distributions of the emitted particles were measured using a condensation particle counter, an optical particle counter, and a scanning mobility particle sizer. The emitted particles were sampled on a polycarbonate filter and analyzed using electron microscopy. The highest number concentrations (arithmetic mean = 4670 particles/cm(3)) were produced with coarse sandpaper, 2% (by weight) CNT test sticks and medium disc sander speed, whereas the lowest number concentrations (arithmetic mean = 92 particles/cm(3)) were produced with medium sandpaper, 2% CNT test sticks and slow disc sander speed. Respirable mass concentrations were highest (arithmetic mean = 1.01 mg/m(3)) for fine sandpaper, 2% CNT test sticks and medium disc sander speed and lowest (arithmetic mean = 0.20 mg/m(3)) for medium sandpaper, 0% CNT test sticks and medium disc sander speed. For CNT-epoxy samples, airborne particles were primarily micrometer-sized epoxy cores with CNT protrusions. No free CNTs were observed in airborne samples, except for tests conducted with 4% CNT epoxy. The number concentration, mass concentration, and size distribution of airborne particles generated when products containing CNTs are sanded depends on the conditions of sanding and the characteristics of the material being sanded.

12.
Aerosol Sci Technol ; 46(2): 214-221, 2012.
Article in English | MEDLINE | ID: mdl-26692631

ABSTRACT

Mesh screens composed of nylon fibers leave minimal residual ash and produce no significant spectral interference when ashed for spectrometric examination. These characteristics make nylon mesh screens attractive as a collection substrate for nanoparticles. A theoretical single-fiber efficiency expression developed for wire-mesh screens was evaluated for estimating the collection efficiency of submicrometer particles for nylon mesh screens. Pressure drop across the screens, the effect of particle morphology (spherical and highly fractal) on collection efficiency and single-fiber efficiency were evaluated experimentally for three pore sizes (60, 100 and 180 µm) at three flow rates (2.5, 4 and 6 Lpm). The pressure drop across the screens was found to increase linearly with superficial velocity. The collection efficiency of the screens was found to vary by less than 4% regardless of particle morphology. Single-fiber efficiency calculated from experimental data was in good agreement with that estimated from theory for particles between 40 and 150 nm but deviated from theory for particles outside this size range. New coefficients for the single-fiber efficiency model were identified that minimized the sum of square error (SSE) between the values estimated with the model and those determined experimentally. Compared to the original theory, the SSE calculated using the modified theory was at least one order of magnitude lower for all screens and flow rates with the exception of the 60-µm pore screens at 2.5 Lpm, where the decrease was threefold.

13.
J Safety Res ; 42(4): 241-52, 2011 Aug.
Article in English | MEDLINE | ID: mdl-22017826

ABSTRACT

INTRODUCTION: A common contention is that the construction of highway bypasses negatively impacts the economy of local communities by reducing pass-by traffic for businesses. However, as access to specific business' account records is limited, this impact is difficult to quantify. Another common contention is that bypasses contribute to a reduction in overall crashes in the community and in the surrounding areas. Even though a large number of bypasses have been constructed in the State of Iowa over the past several years, their actual impact in terms of traffic safety has not been quantified. OBJECTIVES: This study seeks answers to the following questions: (a) Are bypasses in Iowa associated with a reduction in crash frequencies and crash rates on the bypassed highway? (b) Do bypasses in Iowa introduce a reduction of overall crash frequencies and rates or do they merely shift crashes from the highways through the communities to the bypasses with no significant overall reduction? METHOD: We obtained crash information from the Iowa DOT at 19 sites on which a bypass was constructed sometime during the past 23 years. We also obtained the same information at six sites used as comparison sites on which no bypasses were constructed at least until 2005. We them employed a Bayesian approach to estimating the association between the construction of the bypass and crash rates, while also accounting for other factors. RESULTS: The construction of bypasses in Iowa is associated with a significant increase in traffic safety both on the main road through town and on the combined main road and bypass roadway.


Subject(s)
Accidents, Traffic/prevention & control , Automobile Driving , Automobiles , Bayes Theorem , Environment Design/statistics & numerical data , Public Health/methods , Safety , Accidents, Traffic/statistics & numerical data , Data Collection , Humans , Iowa , Poisson Distribution , Risk Assessment
14.
Environ Sci Technol ; 45(15): 6483-90, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21718022

ABSTRACT

A lightweight (60 g), personal nanoparticle respiratory deposition (NRD) sampler was developed to selectively collect particles smaller than 300 nm similar to their typical deposition in the respiratory tract. The sampler operates at 2.5 Lpm and consists of a respirable cyclone fitted with an impactor and a diffusion stage containing mesh screens. The cut-point diameter of the impactor was determined to be 300 nm with a sharpness σ = 1.53. The diffusion stage screens collect particles with an efficiency that matches the deposition efficiency of particles smaller than 300 nm in the respiratory tract. Impactor separation performance was unaffected by loading at typical workplace levels (p-value = 0.26). With chemical analysis of the diffusion media, the NRD sampler can be used to directly assess exposures to nanoparticles of a specific composition apart from other airborne particles. The pressure drop of the NRD sampler is sufficiently low to permit its operation with conventional, belt-mounted sampling pumps.


Subject(s)
Environmental Monitoring/instrumentation , Nanoparticles/chemistry , Particle Size , Respiratory System/metabolism , Particulate Matter/chemistry , Rheology
15.
J Occup Environ Hyg ; 8(2): 86-92, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21253981

ABSTRACT

This work characterized airborne particles generated from the weighing of bulk, multiwall carbon nanotubes (CNTs) and the manual sanding of epoxy test samples reinforced with CNTs. It also evaluated the effectiveness of three local exhaust ventilation (LEV) conditions (no LEV, custom fume hood, and biosafety cabinet) for control of particles generated during sanding of CNT-epoxy nanocomposites. Particle number and respirable mass concentrations were measured using an optical particle counter (OPC) and a condensation particle counter (CPC), and particle morphology was assessed by transmission electron microscopy. The ratios of the geometric mean (GM) concentrations measured during the process to that measured in the background (P/B ratios) were used as indices of the impact of the process and the LEVs on observed concentrations. Processing CNT-epoxy nanocomposites materials released respirable size airborne particles (P/B ratio: weighing = 1.79; sanding = 5.90) but generally no nanoparticles (P/B ratio ∼1). The particles generated during sanding were predominantly micron sized with protruding CNTs and very different from bulk CNTs that tended to remain in large (>1 µm) tangled clusters. Respirable mass concentrations in the operator's breathing zone were lower when sanding was performed in the biological safety cabinet (GM = 0.20 µg/m(3) compared with those with no LEV (GM = 2.68 µg/m(3) or those when sanding was performed inside the fume hood (GM = 21.4 µg/m(3); p-value < 0.0001). The poor performance of the custom fume hood used in this study may have been exacerbated by its lack of a front sash and rear baffles and its low face velocity (0.39 m/sec).


Subject(s)
Air Pollutants, Occupational/analysis , Dust/analysis , Epoxy Compounds/analysis , Nanotubes, Carbon/analysis , Occupational Exposure/analysis , Air Movements , Environmental Monitoring , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...