Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 16(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38539461

ABSTRACT

Classical Hodgkin lymphoma (cHL) is a hematological malignancy of B-cell origin. The tumor cells in cHL are referred to as Hodgkin and Reed-Sternberg (HRS) cells. This review provides an overview of the currently known miRNA-target gene interactions. In addition, we pinpointed other potential regulatory roles of microRNAs (miRNAs) by focusing on genes related to processes relevant for cHL pathogenesis, i.e., loss of B-cell phenotypes, immune evasion, and growth support. A cHL-specific miRNA signature was generated based on the available profiling studies. The interactions relevant for cHL were extracted by comprehensively reviewing the existing studies on validated miRNA-target gene interactions. The miRNAs with potential critical roles included miR-155-5p, miR-148a-3p, miR-181a-5p, miR-200, miR-23a-3p, miR-125a/b, miR-130a-3p, miR-138, and miR-143-3p, which target, amongst others, PU.1, ETS1, HLA-I, PD-L1, and NF-κB component genes. Overall, we provide a comprehensive perspective on the relevant miRNA-target gene interactions which can also serve as a foundation for future functional studies into the specific roles of the selected miRNAs in cHL pathogenesis.

2.
Exp Hematol ; 94: 47-59.e5, 2021 02.
Article in English | MEDLINE | ID: mdl-33333212

ABSTRACT

MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression posttranscriptionally by binding to the 3' untranslated regions of their target mRNAs. The evolutionarily conserved microRNA-125a (miR-125a) is highly expressed in both murine and human hematopoietic stem cells (HSCs), and previous studies have found that miR-125 strongly enhances self-renewal of HSCs and progenitors. In this study we explored whether temporary overexpression of miR-125a would be sufficient to permanently increase HSC self-renewal or, rather, whether persistent overexpression of miR-125a is required. We used three complementary in vivo approaches to reversibly enforce expression of miR-125a in murine HSCs. Additionally, we interrogated the underlying molecular mechanisms responsible for the functional changes that occur in HSCs on overexpression of miR-125a. Our data indicate that continuous expression of miR-125a is required to enhance HSC activity. Our molecular analysis confirms changes in pathways that explain the characteristics of miR-125a overexpressing HSCs. Moreover, it provides several novel putative miR-125a targets, but also highlights the complex molecular changes that collectively lead to enhanced HSC function.


Subject(s)
Hematopoietic Stem Cells/cytology , MicroRNAs/genetics , Animals , Cell Self Renewal , Cells, Cultured , Female , Hematopoietic Stem Cells/metabolism , Mice, Inbred C57BL , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...