Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Histol Histopathol ; 23(11): 1333-40, 2008 11.
Article in English | MEDLINE | ID: mdl-18785116

ABSTRACT

Glypicans represent a family of cell surface proteoglycans. Loss-of-function mutations in the human glypican-3 (GPC3) gene results in the Simpson-Golabi-Behmel syndrome, characterized by severe malformations and pre- and postnatal overgrowth. Because the expression of GPC3 during human embryonic and fetal periods remains largely unknown, we investigated by immunohistochemistry its pattern of expression during four periods of human development covering the embryonic period (P1) from 5 to 8 weeks of development, and the fetal periods (P2, P3 and P4) from 9 to 28 weeks of development. Hepatocytes were homogeneously positive for GPC3 during the four periods while pancreatic acini and ducts showed a rather high staining only during P1. GPC3 was also detected in several kidney structures and in the genital system where the sex cords were weakly positive in P1 and P2. In later developmental stages the male's genital system expressed GPC3 while the female's did not. While the mesenchyme in the limbs showed positive staining in P1, GPC3 was not detected during the following stages. The mesenchymal tissue localized between the most caudal vertebrae was also positive in P1. A strong GPC3 signal was observed in neurons of the spinal cord and dorsal root ganglia in P2 and P3, while the brain was negative. In sum our studies revealed that GPC3 expression is highly tissue- and stage-specific during human development. The expression pattern of GPC3 is consistent with the abnormalities seen in the Simpson-Golabi-Behmel syndrome.


Subject(s)
Embryo, Mammalian/metabolism , Fetus/metabolism , Glypicans/metabolism , Abnormalities, Multiple/metabolism , Animals , Female , Gastrointestinal Tract/embryology , Gastrointestinal Tract/metabolism , Gestational Age , Humans , Immunohistochemistry , Male , Mesoderm/metabolism , Mice , Muscle, Skeletal/embryology , Muscle, Skeletal/metabolism , Nervous System/embryology , Nervous System/metabolism , Respiratory System/embryology , Respiratory System/metabolism , Syndrome , Time Factors , Urogenital System/embryology , Urogenital System/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL