Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Small ; 20(28): e2311121, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38351645

ABSTRACT

Combinatorial sensing is especially important in the context of modern drug development to enable fast screening of large data sets. Mesoporous silica materials offer high surface area and a wide range of functionalization possibilities. By adding structural control, the combination of structural and functional control along all length scales opens a new pathway that permits larger amounts of analytes being tested simultaneously for complex sensing tasks. This study presents a fast and simple way to produce mesoporous silica in various shapes and sizes between 0.27-6 mm by using light-induced sol-gel chemistry and digital light processing (DLP). Shape-selective functionalization of mesoporous silica is successfully carried out either after printing using organosilanes or in situ while printing through the use of functional mesopore template for the in situ functionalization approach. Shape-selective adsorption of dyes is shown as a demonstrator toward shape selective screening of potential analytes.

2.
Nanoscale Adv ; 5(22): 6123-6134, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37941961

ABSTRACT

The wettabilities of nanoscale porous surfaces play important roles in the context of molecular and fluid transport or oil-water separation. The wettability pattern along a nanopore strongly influences fluid distribution throughout the membrane. Mesoporous silica thin films with gradually adjusted wettabilities were fabricated via cocondensation. With consecutive mesoporous layer depositions, double-layer mesoporous silica films with asymmetric or so-called Janus wettability patterns were generated. The effects of these wetting gradients on mass transport, water imbibition, and water vapor condensation were investigated with ellipsometry, cyclic voltammetry (CV), drop friction force instrument (DoFFIs), fluorescence microscopy and interferometry. By increasing the film thickness of the hydrophobic mesoporous silica top layer deposited on a hydrophilic mesoporous silica layer up to 205 nm, molecular transport through both the layers was prevented. However, water was observed to condense onto the bottom layer, and transport occurred for thinner top layers.

3.
J Phys Chem B ; 127(35): 7636-7647, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37639479

ABSTRACT

This work reports the phase behavior and electrochemical properties of liquid coacervates made of ferricyanide and poly(ethylenimine). In contrast to the typical polyanion/polycation pairs used in liquid coacervates, the ferricyanide/poly(ethylenimine) system is highly asymmetric because poly(ethylenimine) has approximately 170 charges per molecule, while ferricyanide has only 3. Two types of phase diagrams were measured and fitted with a theoretical model. In the first type of diagram, the stability of the coacervate was studied in the plane given by the concentration of poly(ethylenimine) versus the concentration of ferricyanide for a fixed concentration of added monovalent salt (NaCl). The second type of diagram involved the plane given by the concentration of poly(ethylenimine) vs the concentration of the added monovalent salt for a fixed poly(ethyleneimine)/ferricyanide ratio. Interestingly, these phase diagrams displayed qualitative similarities to those of symmetric polyanion/polycation systems, suggesting that coacervates formed by a polyelectrolyte and a small multivalent ion can be treated as a specific case of polyelectrolyte coacervate. The characterization of the electrochemical properties of the coacervate revealed that the addition of monovalent salt greatly enhances charge transport, presumably by breaking ion pairs between ferricyanide and poly(ethylenimine). This finding highlights the significant influence of added salt on the transport properties of coacervates. This study provides the first comprehensive characterization of the phase behavior and transport properties of asymmetric coacervates and places these results within the broader context of the better-known symmetric polyelectrolyte coacervates.

4.
Soft Matter ; 19(18): 3301-3310, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37092702

ABSTRACT

The synthesis of one-dimensional (1D) nanostructures in polymeric matrices has become the focus of much research, as the presence of these highly anisotropic domains determines the transport behaviour and mechanical properties of the resulting nanostructured polymers. In this work, 1D PEO nanocrystals were synthesized in situ from polystyrene-b-polyethylene oxide (PS-b-PEO) self-assembly in a polystyrene matrix. For this, three different block copolymers (BCP) were employed: L-BCP (PS = 32 000 Da and PEO = 11 000 Da), M-BCP, (PS = 59 000 Da and PEO = 31 000 Da), and H-BCP, (PS = 102 000 Da and PEO = 34 000 Da). The formation of 1D nanocrystals starts with the reaction-induced microphase separation of BCP during styrene photopolymerization at room temperature. Then, as matrix polymerizes, the primary crystalline micelles aggregate via epitaxial crystallization by end-to-end coupling. The morphology of the resulting nanocrystals was highly dependent on the BCP employed. While L-BCP self-assembles into 1D ribbon-like nanocrystals, M-BCP macro-phase separates and, H-BCP self-assembles into short disk-like nanocrystals. This dissimilar behavior was mainly associated to the length of the stabilizing corona block. In the case of H-BCP, it was found that 1D self-assembly occurred when the conditions for core thickening were given, that is, when a non-reactive period was introduced in the cure cycle. During such a period, core thickening clears the lateral surface of the nanocrystals, allowing end-to-end coupling. The driving force for crystallization was also modified. An increase in undercooling resulted in an elevated nucleation rate and accelerated crystal growth. This led to a narrower size distribution of shorter 1D nanocrystals. This knowledge will enable the synthesis of customized 1D nanocrystals in a thermoplastic matrix, through the precise selection of the BCP formulation and curing conditions.

5.
Nanoscale ; 13(45): 19098-19108, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34761778

ABSTRACT

The ionic screening and the response of non-specific molecules are great challenges of biosensors based on field-effect transistors (FETs). In this work, we report the construction of graphene based transistors modified with mesoporous silica thin films (MTF-GFETs) and the unique (bio)sensing properties that arise from their synergy. The developed method allows the preparation of mesoporous thin films free of fissures, with an easily tunable thickness, and prepared on graphene-surfaces, preserving their electronic properties. The MTF-GFETs show good sensing capacity to small probes that diffuse inside the mesopores and reach the graphene semiconductor channel such as H+, OH-, dopamine and H2O2. Interestingly, MTF-GFETs display a greater electrostatic gating response in terms of amplitude and sensing range compared to bare-GFETs for charged macromolecules that infiltrate the pores. For example, for polyelectrolytes and proteins of low MW, the amplitude increases almost 100% and the sensing range extends more than one order of magnitude. Moreover, these devices show a size-excluded electrostatic gating response given by the pore size. These features are even displayed at physiological ionic strength. Finally, a developed thermodynamic model evidences that the amplification and extended field-effect properties arise from the decrease of free ions inside the MTFs due to the entropy loss of confining ions in the mesopores. Our results demonstrate that the synergistic coupling of mesoporous films with FETs leads to nanofiltered, amplified and extended field-effect sensing (NAExFES).

6.
Langmuir ; 36(46): 13998-14008, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33170718

ABSTRACT

The photothermal response of mercaptoundecanoic acid (MUA)-coated Ag nanoparticles (Ag@MUA NPs) in both aqueous dispersions and paper substrates was determined as a function of pH when irradiated with a green laser or a blue LED source. Aqueous dispersions of Ag@MUA NPs showed an aggregation behavior by acidification that was used for the formation of NPs clusters of variable sizes. Aggregation was induced by changing the pH across the apparent pKa of the acid, higher than the pKa of the free acid. Formation of these aggregates was completely reversible allowing the return to the well-dispersed initial state by simply increasing the pH by the addition of a base. Aggregation produced a shift of the plasmon band that changed the spectra of the dispersions and their ability to be remotely heated when irradiated with visible light. These aggregates could be transferred to paper by simple impregnation of the substrates with the dispersion. On the solid substrate, a higher photothermal response than in the liquid medium was observed. A high local increase of up to 75 °C could be recorded on paper after only 30 s of irradiation with a green laser, whereas a blue LED array was enough for inducing the melting of a solid paraffin (Tm = 36-38 °C) deposited on it. This work demonstrates that photothermal heating can be controlled by the reversible aggregation of NPs to induce different thermal responses in liquid and solid media.

7.
ACS Nano ; 14(10): 12840-12853, 2020 10 27.
Article in English | MEDLINE | ID: mdl-32877170

ABSTRACT

Several examples of nanosized therapeutic and imaging agents have been proposed to date, yet for most of them there is a low chance of clinical translation due to long-term in vivo retention and toxicity risks. The realization of nanoagents that can be removed from the body after use remains thus a great challenge. Here, we demonstrate that nonequilibrium gold-iron alloys behave as shape-morphing nanocrystals with the properties of self-degradable multifunctional nanomedicines. DFT calculations combined with mixing enthalpy-weighted alloying simulations predict that Au-Fe solid solutions can exhibit self-degradation in an aqueous environment if the Fe content exceeds a threshold that depends upon element topology in the nanocrystals. Exploiting a laser-assisted synthesis route, we experimentally confirm that nonequilibrium Au-Fe nanoalloys have a 4D behavior, that is, the ability to change shape, size, and structure over time, becoming ultrasmall Au-rich nanocrystals. In vivo tests show the potential of these transformable Au-Fe nanoalloys as efficient multimodal contrast agents for magnetic resonance imaging and computed X-ray absorption tomography and further demonstrate their self-degradation over time, with a significant reduction of long-term accumulation in the body, when compared to benchmark gold or iron oxide contrast agents. Hence, Au-Fe alloy nanoparticles exhibiting 4D behavior can respond to the need for safe and degradable inorganic multifunctional nanomedicines required in clinical translation.


Subject(s)
Alloys , Nanoparticles , Contrast Media , Gold , Nanomedicine
8.
Chemistry ; 26(54): 12388-12396, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32672356

ABSTRACT

This work reports on a novel and versatile approach to control the structure of metal-organic framework (MOFs) films by using polymeric brushes as 3D primers, suitable for triggering heterogeneous MOF nucleation. As a proof-of-concept, this work explores the use of poly(1-vinylimidazole) brushes primer obtained via surface-initiated atom transfer radical polymerization (SI-ATRP) for the synthesis of Zn-based ZIF-8 MOF films. By modifying the grafting density of the brushes, smooth porous films were obtained featuring inherently hydrophobic microporosity arising from ZIF-8 structure, and an additional constructional interparticle mesoporosity, which can be employed for differential adsorption of targeted adsorbates. It was found that the grafting density modulates the constructional porosity of the films obtained; higher grafting densities result in more compact structures, while lower grafting density generates increasingly inhomogeneous films with a higher proportion of interparticle constructional porosity.

9.
Chempluschem ; 85(8): 1616-1622, 2020 08.
Article in English | MEDLINE | ID: mdl-32432385

ABSTRACT

Electroactive thin films are an important element in the devices devoted to energy conversion, actuators, and molecular electronics, among others. Their build-up by the layer-by-layer technique is an attractive choice since a fine control over the thickness and composition can be achieved. However, most of the assemblies described in the literature show a lack of internal order, and their thicknesses change upon oxidation-state alterations. In this work, we describe the formation of layer-by-layer assemblies of redox surfactants and polyelectrolytes that leads to the construction of mesoscale organized electroactive films. In contrast to thin films prepared with traditional redox polymers, here, the redox surfactant does not only allow the control of the film meso-organization (from 2D hexagonal to circular hexagonal phases) but it also allows the control of the number and position of the redox centers. Finally, these films show high stability and a negligible structural deformation under redox-state changes.

10.
Glob Chall ; 4(2): 1900076, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32042446

ABSTRACT

Due to its deleterious effects on health, development of new methods for detection and removal of pesticide residues in primary and derived agricultural products is a research topic of great importance. Among them, imazalil (IMZ) is a widely used post-harvest fungicide with good performances in general, and is particularly applied to prevent green mold in citrus fruits. In this work, a composite film for the impedimetric sensing of IMZ built from metal-organic framework nanocrystallites homogeneously distributed on a conductive poly(3,4-ethylene dioxythiophene) (PEDOT) layer is presented. The as-synthetized thin films are produced via spin-coating over poly(ethylene terephtalate (PET) substrate following a straightforward, cost-effective, single-step procedure. By means of impedance spectroscopy, electric transport properties of the films are studied, and high sensitivity towards IMZ concentration in the range of 15 ppb to 1 ppm is demonstrated (featuring 1.6 and 4.2 ppb limit of detection, when using signal modulus and phase, respectively). The sensing platform hereby presented could be used for the construction of portable, miniaturized, and ultrasensitive devices, suitable for pesticide detection in food, wastewater effluents, or the assessment of drinking-water quality.

11.
Soft Matter ; 15(23): 4751-4760, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31150039

ABSTRACT

It has been previously reported that poly(ethylene) (PE)-based block copolymers self-assemble in certain thermosetting matrices to form a dispersion of one-dimensional (1D) nanoribbons. Such materials exhibit exceptional properties that originate from the high aspect ratio of the elongated nano-objects. However, the ability to prepare 1D assemblies with well-controlled dimensions is limited and represents a key challenge. Here, we demonstrate that the length of ribbon-like nanostructures can be precisely controlled by regulating the mobility of the matrix during crystallization of the core-forming PE block. The selected system to prove this concept was a poly(ethylene-block-ethylene oxide) (PE-b-PEO) block copolymer in an epoxy monomer based on diglycidyl ether of bisphenol A (DGEBA). The system was activated with a dual thermal- and photo-curing system, which allowed us to initiate the epoxy polymerization at 120 °C until a certain degree of conversion, stop the reaction by cooling to induce crystallization and micellar elongation, and then continue the polymerization at room temperature by visible-light irradiation. In this way, crystallization of PE blocks took place in a matrix whose mobility was regulated by the degree of conversion reached at 120 °C. The mechanism of micellar elongation was conceptualized as a diffusion-limited colloid aggregation process which was induced by crystallization of PE cores. This assertion was supported by the evidence obtained from in situ small-angle X-ray scattering (SAXS), in combination with differential scanning calorimetry (DSC) and transmission electron microscopy (TEM).

12.
Phys Chem Chem Phys ; 20(14): 9298-9308, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29616241

ABSTRACT

Interfacial supramolecular architectures displaying mesoscale organized components are of fundamental importance for developing materials with novel or optimized properties. Nevertheless, engineering the multilayer assembly of different building blocks onto a surface and exerting control over the internal mesostructure of the resulting film is still a challenging task in materials science. In the present work we demonstrate that the integration of surfactants (as mesogenic agents) into layer-by-layer (LbL) assembled polyelectrolyte multilayers offers a straightforward approach to control the internal film organization at the mesoscale level. The mesostructure of films constituted of hexadecyltrimethylammonium bromide, CTAB, and polyacrylic acid, PAA (of different molecular weights), was characterized as a function of the number of assembled layers. Structural characterization of the multilayered films by grazing-incidence small-angle X-ray scattering (GISAXS), showed the formation of mesostructured composite polyelectrolyte assemblies. Interestingly, the (PAA/CTA)n assemblies prepared with low PAA molecular weight presented different mesostructural regimes which were dependent on the number of assembled layers: a lamellar mesophase for the first bilayers, and a hexagonal circular mesophase for n ≥ 7. This interesting observation was explained in terms of the strong interaction between the substrate and the first layers leading to a particular mesophase. As the film increases its thickness, the prevalence of this strong interaction decreases and the supramolecular architecture exhibits a "bulk" mesophase. Finally, we demonstrated that the molecular weight of the polyelectrolyte has a considerable impact on the meso-organization for the (PAA/CTA)n assemblies. We consider that these studies open a path to new rational methodologies to construct "nanoarchitectured" polyelectrolyte multilayers.

13.
Phys Chem Chem Phys ; 20(11): 7570-7578, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29492502

ABSTRACT

Molecular design and preparation of redox active films displaying mesoscopic levels of organization represents one of the most actively pursued research areas in nanochemistry. These mesostructured materials are not only of great interest at the fundamental level because of their unique properties but they can also be employed for a wide range of applications such as electrocatalysts, electronic devices, and electrochemical energy conversion and storage. Herein, we introduce a simple and straightforward strategy to chemically modify electrode surfaces with self-assembled electroactive polyelectrolyte-surfactant complexes. These assemblies are composed of amino-appended polyaniline and monododecyl phosphate. The complexes were deposited by spin-coating and the films were characterized by spectroscopic and X-ray-based techniques: XRR, GISAXS, WAXS, and XPS. The films presented a well-defined lamellar structure, directed by the strong interaction between the phosphate groups and the positively charged amine groups in the polyelectrolyte. These films also displayed intrinsic electroactivity in both acidic and neutral solutions, showing that the polymer remains electroactive and ionic transport is still possible through the stratified and hydrophobic coatings. The stability and enhanced electroactivity in neutral solutions make these assembled films promising building blocks for the construction of nanostructured electrochemical platforms.

14.
J Phys Chem B ; 122(15): 4366-4375, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29589933

ABSTRACT

The most critical problem regarding the use of reverse micelles (RMs) in several fields is the toxicity of their partial components. In this sense, many efforts have been made to characterize nontoxic RM formulations on the basis of biological amphiphiles and/or different oils. In this contribution, the microstructure of biocompatible mixed RMs formulated by sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT) and tri- n-octylphosphine oxide (TOPO) surfactants dispersed in the friendly solvent methyl laurate was studied by using SAXS and 31P NMR and by following the solvatochromic behavior of the molecular probe 4-aminophthalimide (4-AP). The results indicated the presence of RM aggregates upon TOPO incorporation with a droplet size reduction and an increase in the interfacial fluidity in comparison with pure AOT RMs. When confined inside the mixed systems, 4-AP showed a red-edge excitation shift and confirmed the increment of interfacial fluidity upon TOPO addition. Also, the partition between the external nonpolar solvent and the RM interface and an increase in both the local micropolarity and the capability to form a hydrogen bond interaction between 4-AP and a mixed interface were observed. The findings have been explained in terms of the nonionic surfactant structure and its complexing nature expressed at the interfacial level. Notably, we show how two different approaches, i.e., SAXS and the solvatochromism of the probe 4-AP, can be used in a complementary way to enhance our understanding of the interfacial fluidity of RMs, a parameter that is difficult to measure directly.

15.
Soft Matter ; 14(10): 1939-1952, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29479625

ABSTRACT

Supramolecular self-assembly is of paramount importance for the development of novel functional materials with molecular-level feature control. In particular, the interest in creating well-defined stratified multilayers through simple methods using readily available building blocks is motivated by a multitude of research activities in the field of "nanoarchitectonics" as well as evolving technological applications. Herein, we report on the facile preparation and application of highly organized stacked multilayers via layer-by-layer assembly of lipid-like surfactants and polyelectrolytes. Polyelectrolyte multilayers with high degree of stratification of the internal structure were constructed through consecutive assembly of polyallylamine and dodecyl phosphate, a lipid-like surfactant that act as a structure-directing agent. We show that multilayers form well-defined lamellar hydrophilic/hydrophobic domains oriented parallel to the substrate. More important, X-ray reflectivity characterization conclusively revealed the presence of Bragg peaks up to fourth order, evidencing the highly stratified structure of the multilayer. Additionally, hydrophobic lamellar domains were used as hosts for ferrocene in order to create an electrochemically active film displaying spatially-addressed redox units. Stacked multilayers were then assembled integrating redox-tagged polyallylamine and glucose oxidase into the stratified hydrophilic domains. Bioelectrocatalysis and "redox wiring" in the presence of glucose was demonstrated to occur inside the stratified multilayer.

16.
Langmuir ; 34(1): 425-431, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29228770

ABSTRACT

We present experimental results demonstrating the suitability of polyelectrolyte capping as a simple and straightforward procedure to modify hydrophilic/hydrophobic character of porous films, thus allowing additional control on transport properties. In particular, we synthesized ZIF-8 metal organic framework (MOF) films, an archetypal hydrophobic zeolitic imidazolate framework, constituted by Zn2+ ions tetrahedrally coordinated with bidentate 2-methylimidazolate organic linker, and poly(4-styrenesulfonic acid) as capping agent (PSS). MOF films were synthesized via sequential one pot (SOP) steps over conductive substrates conveniently modified with primer agents known to enhance heterogeneous nucleation, followed by dip-coating with PSS aqueous solutions. Crystallinity, morphology, and chemical composition of ZIF-8 films were confirmed with traditional methods. Continuous electron density depth profile obtained with synchrotron light X-ray reflectivity (XRR) technique, suggest that PSS capped-films do not adopt segregated configurations in which PSS remains surface-confined. This affects functional properties conferred by PSS capping, which were assessed using cyclic voltammetry with both positively and negatively charged redox probe molecules. Furthermore, taking advantage of the control attained, we successfully carried in situ synthesis of film-hosted d-block metal nanoparticles (Au and Pt-NPT@5x-ZIF-8+PSS) via direct aqueous chemical reduction of precursors (diffusion-reaction approach).

17.
Langmuir ; 33(39): 10248-10258, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28874051

ABSTRACT

A detailed understanding of the processes taking place during the in situ synthesis of metal/polymer nanocomposites is crucial to manipulate the shape and size of nanoparticles (NPs) with a high level of control. In this paper, we report an in-depth time-resolved analysis of the particle formation process in silver/epoxy nanocomposites obtained through a visible-light-assisted in situ synthesis. The selected epoxy monomer was based on diglycidyl ether of bisphenol A, which undergoes relatively slow cationic ring-opening polymerization. This feature allowed us to access a full description of the formation process of silver NPs before this was arrested by the curing of the epoxy matrix. In situ time-resolved small-angle X-ray scattering investigation was carried out to follow the evolution of the number and size of the silver NPs as a function of irradiation time, whereas rheological experiments combined with near-infrared and ultraviolet-visible spectroscopies were performed to interpret how changes in the rheological properties of the matrix affect the nucleation and growth of particles. The analysis of the obtained results allowed us to propose consistent mechanisms for the formation of metal/polymer nanocomposites obtained by light-assisted one-pot synthesis. Finally, the effect of a thermal postcuring treatment of the epoxy matrix on the particle size in the nanocomposite was investigated.

18.
ACS Appl Mater Interfaces ; 9(1): 1119-1128, 2017 Jan 11.
Article in English | MEDLINE | ID: mdl-27977921

ABSTRACT

The search for strategies to improve the performance of bioelectrochemical platforms based on supramolecular materials has received increasing attention within the materials science community, where the main objective is to develop low-cost and flexible routes using self-assembly as a key enabling process. Important contributions to the performance of such bioelectrochemical devices have been made based on the integration and supramolecular organization of redox-active polyelectrolyte-surfactant complexes on electrode supports. Here, we examine the influence of the processing solvent on the interplay between the supramolecular mesoorganization and the bioelectrochemical properties of redox-active self-assembled nanoparticle-polyelectrolyte-surfactant nanocomposite thin films. Our studies reveal that the solvent used in processing the supramolecular films and the presence of metal nanoparticles not only have a substantial influence in determining the mesoscale organization and morphological characteristics of the film but also have a strong influence on the efficiency and performance of the bioelectrochemical system. In particular, a higher bioelectrochemical response is observed when nanocomposite supramolecular films were cast from aqueous solutions. These observations seem to be associated with the fact that the use of aqueous solvents increases the hydrophilicity of the film, thus favoring the access of glucose, particularly at low concentrations. We believe that these results improve our current understanding of supramolecular nanocomposite materials generated via polyelectrolyte-surfactant complexes, in order to use the processing conditions as a variable to improve the performance of bioelectrochemical devices.


Subject(s)
Surface-Active Agents/chemistry , Glucose Oxidase , Oxidation-Reduction , Polyelectrolytes , Solvents
19.
J Colloid Interface Sci ; 471: 71-75, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-26990953

ABSTRACT

In this work, the self-assembly of non-uniform unimolecular micelles constituted of a hyperbranched polyester core decorated with a corona of thermoresponsive poly(N-isopropylacrylamide) (PNIPAm) chains has been studied. As revealed by dynamic light scattering (DLS), transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS), these unimicelles form uniform supraparticles through a thermally-induced self-limited process, as well as exhibit molecular features commonly observed in PNIPAm-based gels. We believe that these results provide new insights into the application of stimuli-responsive polymeric materials as versatile building blocks to build up soft supraparticles displaying well-defined dimensional characteristics.

20.
Bioelectrochemistry ; 105: 117-22, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26094060

ABSTRACT

In this work the effects of the self-assembly solvent on the structure and electrochemical behavior of redox-active polyelectrolyte­surfactant complexes cast on electrode supports from aqueous and DMF solutions are presented. The complex studied is formed by complexation of osmium complex-modified polyallylamine (OsPA) with dodecyl sulfate (DS) surfactants. The structure of the films was characterized by GISAXS, showing that films present a lamellar mesostructure. However, when they are exposed to humid environments, films cast from aqueous solutions (OsPA­DSaq) undergo a structural transition that ultimately leads to the disappearance of the mesostructural order. On the other hand, OsPA­DS films cast from DMF solutions (OsPA­DSorg) revealed no significant changes upon exposure to humid environments. Both types of films were exposed to glucose oxidase (GOx), showing similar adsorption characteristics. Notwithstanding these similarities in GOx and content, OsPA­DSaq films revealed a more sensitive bioelectrocatalytical response to glucose as compared to OsPA­DSorg films.


Subject(s)
Electrodes , Electrolytes/chemistry , Glucose Oxidase/chemistry , Surface-Active Agents/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL