Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Mar Pollut Bull ; 205: 116564, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38861799

ABSTRACT

Anthropogenic noise is considered one important global pollutant. The impact of noise on marine invertebrates has been less assessed. The present study evaluated the chronic effect of the motorboat noise obtained from a lagoon's soundscape, the natural habitat of the key crab Neohelice granulata, on its whole embryonic development, considering morphological and physiological carryover effects on embryos and hatched larvae. Results demonstrated that embryonic development was shortened under noise exposure. The effects on advanced embryos, larvae and adult females were: increased heartbeats and non-viable eggs, and decreased fecundity. Biochemical responses showed lipid peroxidation in embryos while antioxidant enzymes were activated in larvae and adults, indicating a counteracting effect related to the life stage. The negative effects on fitness offspring may imply ecological consequences at the population level. Results are discussed in terms of the ecosystem engineer species studied and the habitat, a MAB UNESCO Reserve lagoon, suggesting the urgent need to develop mitigation plans.

2.
Biology (Basel) ; 11(3)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35336741

ABSTRACT

Acoustic sequences are commonly observed in many animal taxa. The vast vocal repertoire of common bottlenose dolphins (Tursiops truncatus) also includes sequences of multi-unit rhythmic signals called bray-call which are still poorly documented, both functionally and geographically. This study aimed to (1) describe, classify, and characterize series of bray-call recorded in two sites of the Mediterranean basin (Rome-Tyrrhenian Sea and Mazara del Vallo-Strait of Sicily) and (2) investigate for the existence of possible geographic differences. The acoustic analysis identified 13 different sequence types, only two detected in both study areas. The Sørensen-Dice index revealed a low degree of similarity between the sequence repertoire of the two common bottlenose dolphin sub-populations, with the Tyrrhenian being more diversified and complex than the Sicilian one. The acoustic parameters also showed variability between the study area. Different variants of the main acoustic elements composing the bray-call sequences were detected in the Tyrrhenian Sea only. The Markov-chain model demonstrated that the transition probability between acoustic elements is not uniform, with specific combinations of elements having a higher probability of occurrence. These new findings on common bottlenose dolphin bray-call sequences highlight the structural complexity of these vocalizations and suggest addressing future research on the context of emissions and the possible function(s) of such acoustic arrangements.

3.
Animals (Basel) ; 11(12)2021 Dec 19.
Article in English | MEDLINE | ID: mdl-34944368

ABSTRACT

Marine mammal vocal elements have been investigated for decades to assess whether they correlate with stress levels or stress indicators. Due to their acoustic plasticity, the interpretation of dolphins' acoustic signals of has been studied most extensively. This work describes the acoustic parameters detected in whistle spectral contours, collected using passive acoustic monitoring (PAM), in a bycatch event that involved three Bottlenose dolphins during midwater commercial trawling. The results indicate a total number of 23 upsweep whistles recorded during the bycatch event, that were analyzed based on the acoustic parameters as follows: (Median; 25th percentile; 75th percentile) Dr (second), total duration (1.09; 0.88; 1.24); fmin (HZ), minimum frequency (5836.4; 5635.3; 5967.1); fmax (HZ), maximum frequency, (11,610 ± 11,293; 11,810); fc (HZ), central frequency; (8665.2; 8492.9; 8982.8); BW (HZ), bandwidth (5836.4; 5635.3; 5967.1); Step, number of step (5; 4; 6). Furthermore, our data show that vocal production during the capture event was characterized by an undescribed to date combination of two signals, an ascending whistle (upsweep), and a pulsed signal that we called "low-frequency signal" in the frequency band between 4.5 and 7 kHz. This capture event reveals a novel aspect of T. truncatus acoustic communication, it confirms their acoustic plasticity, and suggests that states of discomfort are conveyed through their acoustic repertoire.

4.
J Acoust Soc Am ; 147(6): 3795, 2020 06.
Article in English | MEDLINE | ID: mdl-32611157

ABSTRACT

Anthropogenic activities are causing increased noise levels in the marine environment. To date, few studies have been undertaken to investigate the effects of different noise frequencies on the behaviour of juvenile fish. In this study, the behavioural changes of juvenile gilthead seabream (Sparus aurata) are evaluated when exposed to white noise filtered in third-octave bands centred at 63, 125, 500, and 1000 Hz (sound pressure level, 140-150 dB re 1 µΡa) for 7 h. The group dispersion, motility, and swimming height of the fish were analysed before and during the acoustic emission. Dispersion of the fish was found to reduce immediately upon application of low frequency sound (63 and 125 Hz) with a return to control condition after 2 h (indicative of habituation), whereas at 1 kHz, dispersion increased after 2 h without any habituation. The motility decreased significantly at 63 Hz throughout the 7 h of sound exposure. The swimming height decreased significantly for all frequencies other than 125 Hz. The results of this study highlight significant variations in the behavioural responses of juvenile fish that could have consequences on their fitness and survival.


Subject(s)
Sea Bream , Acoustics , Animals , Noise/adverse effects , Sound , Swimming
5.
J Acoust Soc Am ; 147(4): 2414, 2020 04.
Article in English | MEDLINE | ID: mdl-32359276

ABSTRACT

Underwater sounds generated by anthropogenic activity can cause behavior changes, temporary loss of hearing, damage to parts of the body, or death in a number of marine organisms and can also affect healing and survival. In this study, the authors examined the effects of high-frequency acoustic stimulations on a number of biochemical parameters in the Mediterranean mussel, Mytilus galloprovincialis. During the experiment, animals were placed in a test tank and exposed to acoustic signals [a linear sweep ranging from 100 to 200 kHz and lasting 1 s, with a sound pressure level range of between 145 and 160 dBrms (re 1µParms)] for 3 h. Total haemocyte count was assessed and glucose levels, cytotoxic activity and enzyme activity (alkaline phosphatase, esterase and peroxidase) in the digestive gland were measured. For the first time, this study suggests that high-frequency noise pollution has a negative impact on biochemical parameters in the digestive gland.


Subject(s)
Mytilus , Water Pollutants, Chemical , Acoustic Stimulation , Animals
6.
Article in English | MEDLINE | ID: mdl-31923630

ABSTRACT

Marine life is extremely sensitive to the effects of environmental noise due to its reliance on underwater sounds for basic life functions, such as searching for food and mating. However, the effects on invertebrate species are not yet fully understood. The aim of this study was to determine the biochemical responses of Arbacia lixula exposed to high-frequency noise. Protein concentration, enzyme activity (esterase, phosphatase and peroxidase) and cytotoxicity in coelomic fluid were compared in individuals exposed for three hours to consecutive linear sweeps of 100 to 200 kHz lasting 1 s, and control specimens. Sound pressure levels ranged between 145 and 160 dB re 1µPa. Coelomic fluid was extracted and the gene and protein expression of HSP70 with RT-PCR was evaluated on coelomocytes. A significant change was found in enzyme activity and in the expression of the HSP70 gene and protein compared to the control. These results suggested that high-frequency stimuli elicit a noise-induced physiological stress response in A. lixula, confirming the vulnerability of this species to acoustic exposure. Furthermore, these findings provide the first evidence that cell-free coelomic fluid can be used as a signal to evaluate noise exposure in marine invertebrates.


Subject(s)
Arbacia/physiology , Body Fluids/metabolism , Cell Proliferation , Coelomomyces/metabolism , HSP70 Heat-Shock Proteins/metabolism , Hemolysis , Noise , Alkaline Phosphatase/metabolism , Animals , Body Fluids/chemistry , Esterases/metabolism , HSP70 Heat-Shock Proteins/genetics , Homeostasis , Metabolome , Peroxidase/metabolism
7.
J Acoust Soc Am ; 146(5): 3466, 2019 11.
Article in English | MEDLINE | ID: mdl-31795673

ABSTRACT

Very few studies of sound production in the Brachyura have simultaneously identified the type of individuals (e.g., sex) producing acoustic signals, the structures involved in making sound and the social context. The emission and type of sound signals in Neohelice granulata were previously characterized, but the sex and the body structures involved in the sound production mechanism were not determined. In the present study, experiments conducted in the laboratory demonstrated that acoustic signals were produced by males through an up-down movement of the cheliped by rubbing the merus against the pterygostomial area of the carapace. The micromorphology of the merus showed that it has a ridge of tubercles which may act as a plectrum, while the pterygostomial area bears tubercles and might function as the pars stridens. Acoustic signals were displayed more frequently in the presence of receptive females. Agonistic encounters among males also occurred more often in the presence of receptive females. The authors propose that Neohelice granulata males use their chelipeds to produce sound signals in a mating context, probably to attract the receptive female and/or to repel other males when a receptive female is present. Thus, the display might have a reproductive function influencing mate choice.

8.
Sci Rep ; 9(1): 9586, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31270346

ABSTRACT

In this study, underwater noise from a full-scale wave energy converter system (ISWEC), installed on the coast of Pantelleria Island (central Mediterranean Sea), was characterized. The noise was measured using an autonomous acoustic recorder anchored to the sea bottom 40 m from the ISWEC hull. Acoustic monitoring continued for 15 months, starting 7 months before (PRE), 2 months during (INST) and 6 months after the ISWEC installation (POST). The levels of noise, assessed with power spectrum density and octave and third-octave band sound pressure levels (BSPLs), were higher during the POST period than during the PRE period at lower frequencies up to 4 kHz and increased with wave height. During the ISWEC activation for energy production (POST_ON) in the wave height range 1-2.9 m, the BSPLs increased much more at lower frequencies up to 4 kHz (the median BSPLs at 63 Hz for the PRE, POST, and POST_ON conditions were 73, 106, and 126 dB re 1µPa, respectively). Considering the biophonies that make up the soundscape of the area, we examined the possible masking of fish choruses due to ISWEC noise and highlighted that at a distance of 1000 m, the 800 Hz peak frequency was 10 dB above the ISWEC signal. Within this distance from ISWEC, a possible masking effect is supposed.

9.
Naturwissenschaften ; 106(7-8): 35, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31201563

ABSTRACT

In semi-terrestrial crabs, the production of sounds has been recognized to be related to courtship communication dynamics. The present study aimed to assess if the crab Neohelice granulata (Varunidae) was able to emit acoustic signals and if they played a role in the crab's behaviour. We also assessed the locomotor behaviours to examine these parameters in different mating contexts of crabs. The study was divided into two different experimental conditions: 'solitary experiment' (consisting of three combination layouts with male, unreceptive and receptive females alone) and 'group experiment' (consisting of mixed combinations layouts of males, unreceptive, and receptive females). Synchronized acoustic and video monitoring systems were used to record the acoustic signals and locomotor behaviours of alone and grouped specimens. The greatest values of locomotor behavioural parameters were observed in layouts with receptive females alone and with 2 males plus 1 receptive female, probably related to courtship behaviour. N. granulata produced two distinct signals, a multi-pulse rasp signal (highest numbers were recorded in layouts with male alone and with 2 males plus 1 receptive female) and a single rasp signal. These results may suggest that males use the multi-rasp signal to advertise their presence to other males or to attract receptive females.


Subject(s)
Animal Communication , Brachyura/physiology , Sexual Behavior, Animal/physiology , Acoustics , Animals , Female , Male , Seawater
10.
Sci Rep ; 6: 34230, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27677956

ABSTRACT

The study of marine soundscapes is an emerging field of research that contributes important information about biological compositions and environmental conditions. The seasonal and circadian soundscape trends of a marine protected area (MPA) in the Mediterranean Sea have been studied for one year using an autonomous acoustic recorder. Frequencies less than 1 kHz are dominated by noise generated by waves and are louder during the winter; conversely, higher frequencies (4-96 kHz) are dominated by snapping shrimp, which increase their acoustic activity at night during the summer. Fish choruses, below 2 kHz, characterize the soundscape at sunset during the summer. Because there are 13 vessel passages per hour on average, causing acoustic interference with fish choruses 46% of the time, this MPA cannot be considered to be protected from noise. On the basis of the high seasonal variability of the soundscape components, this study proposes a one-year acoustic monitoring protocol using the soundscape methodology approach and discusses the concept of MPA size.

11.
Mar Pollut Bull ; 84(1-2): 104-14, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24910186

ABSTRACT

This study examined the effects of boat noise on the behavioural and biochemical parameters of the Mediterranean spiny lobster (Palinurus elephas). The experiment was conducted in a tank equipped with a video and audio recording system. 18 experimental trials, assigned to boat noise and control conditions, were performed using lobsters in single and group of 4 specimens. After a 1h habituation period, we audio- and video-recorded the lobsters for 1h. During the experimental phase, the animals assigned to the boat groups were exposed to boat noise pollution (a random sequence of boat noises). Exposure to the noise produced significant variations in locomotor behaviours and haemolymphatic parameters. Our results indicate that the lobsters exposed to boat noises increased significantly their locomotor activities and haemolymphatic bioindicator of stressful conditions such as glucose, total proteins, Hsp70 expression and THC when tested both singly and in groups.


Subject(s)
Behavior, Animal , Noise , Palinuridae , Ships , Animals , Environmental Pollution , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...