Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Phytopathology ; 107(4): 395-402, 2017 04.
Article in English | MEDLINE | ID: mdl-27992307

ABSTRACT

Xylella fastidiosa, an economically important plant-pathogenic bacterium, infects both coffee and citrus trees in Brazil. Although X. fastidiosa in citrus is well studied, knowledge about the population structure of this bacterium infecting coffee remains unknown. Here, we studied the population structure of X. fastidiosa infecting coffee trees in São Paulo State, Brazil, in four regions where citrus is also widely cultivated. Genotyping of over 500 isolates from coffee plants using 14 genomic microsatellite markers indicated that populations were largely geographically isolated, as previously found with populations of X. fastidiosa infecting citrus. These results were supported by a clustering analysis, which indicated three major genetic groups among the four sampled regions. Overall, approximately 38% of isolates showed significant membership coefficients not related to their original geographical populations (i.e., migrants), characterizing a significant degree of genotype flow among populations. To determine whether admixture occurred between isolates infecting citrus and coffee plants, one site with citrus and coffee orchards adjacent to each other was selected; over 100 isolates were typed from each host plant. No signal of natural admixture between citrus- and coffee-infecting isolates was found; artificial cross-infection assays with representative isolates also yielded no successful cross infection. A comparison determined that X. fastidiosa populations from coffee have higher genetic diversity and allelic richness compared with citrus. The results showed that coffee and citrus X. fastidiosa populations are effectively isolated from each other and, although coffee populations are spatially structured, migration has an important role in shaping diversity.


Subject(s)
Citrus/microbiology , Coffea/microbiology , Genetic Variation , Plant Diseases/microbiology , Xylella/genetics , Alleles , Brazil , Genomics , Genotype , Microsatellite Repeats/genetics , Spatial Analysis , Sympatry , Xylella/isolation & purification
2.
Phytopathology ; 107(1): 121-131, 2017 01.
Article in English | MEDLINE | ID: mdl-27571310

ABSTRACT

The fungus Rhizoctonia oryzae-sativae is an important pathogen that causes the aggregated sheath spot disease on rice. In this study, we investigated the genetic structure of rice-adapted populations of R. oryzae-sativae sampled from traditional rice-cropping areas from the Paraíba Valley, São Paulo, Brazil, and from Meta, in the Colombian Llanos, in South America. We used five microsatellite loci to measure population differentiation and infer the pathogen's reproductive system. Gene flow was detected among the three populations of R. oryzae-sativae from lowland rice in Brazil and Colombia. In contrast, a lack of gene flow was observed between the lowland and the upland rice populations of the pathogen. Evidence of sexual reproduction including low clonality, Hardy-Weinberg equilibrium within loci and gametic equilibrium between loci, indicated the predominance of a mixed reproductive system in all populations. In addition, we assessed the adaptive potential of the Brazilian populations of R. oryzae-sativae to emerge as a pathogen to Urochloa spp. (signalgrass) based on greenhouse aggressiveness assays. The Brazilian populations of R. oryzae-sativae were probably only incipiently adapted as a pathogen to Urochloa spp. Comparison between RST and QST showed the predominance of diversifying selection in the divergence between the two populations of R. oryzae-sativae from Brazil.


Subject(s)
Genetics, Population , Oryza/microbiology , Plant Diseases/microbiology , Poaceae/microbiology , Rhizoctonia/genetics , Brazil , Gene Flow , Genotype , Geography , Microsatellite Repeats/genetics , Rhizoctonia/isolation & purification , Rhizoctonia/pathogenicity
3.
Phytopathology ; 105(11): 1475-86, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26222889

ABSTRACT

The fungus Rhizoctonia solani anastomosis group (AG)-1 IA emerged in the early 1990s as an important pathogen causing foliar blight and collar rot on pastures of the genus Urochloa (signalgrass) in South America. We tested the hypothesis that this pathogen emerged following a host shift or jump as a result of geographical overlapping of host species. The genetic structure of host and regional populations of R. solani AG-1 IA infecting signalgrass, rice, and soybean in Colombia and Brazil was analyzed using nine microsatellite loci in 350 isolates to measure population differentiation and infer the pathogen reproductive system. Phylogeographical analyses based on the microsatellite loci and on three DNA sequence loci were used to infer historical migration patterns and test hypotheses about the origin of the current pathogen populations. Cross pathogenicity assays were conducted to measure the degree of host specialization in populations sampled from different hosts. The combined analyses indicate that the pathogen populations currently infecting Urochloa in Colombia and Brazil most likely originated from a population that originally infected rice. R. solani AG-1 IA populations infecting Urochloa exhibit a mixed reproductive system including both sexual reproduction and long-distance dispersal of adapted clones, most likely on infected seed. The pathogen population on Urochloa has a genetic structure consistent with a high evolutionary potential and showed evidence for host specialization.


Subject(s)
Gene Flow , Glycine max/microbiology , Host Specificity , Oryza/microbiology , Rhizoctonia/genetics , Brazil , Colombia , Genetic Variation , Microsatellite Repeats , Phylogeography , Plant Diseases , Rhizoctonia/pathogenicity
4.
Phytopathology ; 105(3): 284-94, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25226525

ABSTRACT

Wheat blast, caused by Magnaporthe oryzae, is an important disease across central and southern Brazil. Control has relied mainly on strobilurin fungicides (quinone-outside inhibitors [QoIs]). Here, we report the widespread distribution of QoI resistance in M. oryzae populations sampled from wheat fields and poaceous hosts across central and southern Brazil and the evolution of the cytochrome b (cyt b) gene. Sequence analysis of the cyt b gene distinguished nine haplotypes, with four haplotypes carrying the G143A mutation associated with QoI resistance and two haplotypes shared between isolates sampled from wheat and other poaceous hosts. The frequency of the G143A mutation in the wheat-infecting population increased from 36% in 2005 to 90% in 2012. The G143A mutation was found in many different nuclear genetic backgrounds of M. oryzae. Our findings indicate an urgent need to reexamine the use of strobilurins to manage fungal wheat diseases in Brazil.


Subject(s)
Cytochromes b/genetics , Drug Resistance, Fungal/genetics , Magnaporthe/genetics , Methacrylates , Pyrimidines , Base Sequence , Haplotypes , Molecular Sequence Data , Strobilurins , Triticum/microbiology
5.
Phytopathology ; 104(1): 95-107, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23901831

ABSTRACT

Since its first report in Brazil in 1985, wheat blast, caused by Magnaporthe oryzae (anamorph: Pyricularia oryzae), has become increasingly important in South America, where the disease is still spreading. We used 11 microsatellite loci to elucidate the population structure of the wheat blast pathogen in wheat fields in central-western, southeastern, and southern Brazil. No subdivision was found among the wheat-infecting populations, consistent with high levels of gene flow across a large spatial scale. Although the clonal fraction was relatively high and the two mating type idiomorphs (MAT1-1 and MAT1-2) were not at similar frequencies, the clone-corrected populations from Distrito Federal and Goiás, Minas Triangle, and São Paulo were in gametic equilibrium. Based on these findings, we propose that populations of the wheat blast pathogen exhibit a mixed reproductive system in which sexual reproduction is followed by the local dispersal of clones. Seedling virulence assays with local wheat cultivars differentiated 14 pathotypes in the current population. Detached head virulence assays differentiated eight virulence groups on the same wheat cultivars. There was no correlation between seedling and head reactions.


Subject(s)
Genetic Variation , Genetics, Population , Magnaporthe/genetics , Oryza/microbiology , Plant Diseases/microbiology , Triticum/microbiology , Brazil , Gene Flow , Genes, Fungal/genetics , Genes, Mating Type, Fungal/genetics , Inflorescence/microbiology , Magnaporthe/pathogenicity , Microsatellite Repeats/genetics , Seedlings/microbiology , Virulence
6.
PLoS One ; 8(8): e71148, 2013.
Article in English | MEDLINE | ID: mdl-23940707

ABSTRACT

Over the past two decades, several fungal outbreaks have occurred, including the high-profile 'Vancouver Island' and 'Pacific Northwest' outbreaks, caused by Cryptococcus gattii, which has affected hundreds of otherwise healthy humans and animals. Over the same time period, C. gattii was the cause of several additional case clusters at localities outside of the tropical and subtropical climate zones where the species normally occurs. In every case, the causative agent belongs to a previously rare genotype of C. gattii called AFLP6/VGII, but the origin of the outbreak clades remains enigmatic. Here we used phylogenetic and recombination analyses, based on AFLP and multiple MLST datasets, and coalescence gene genealogy to demonstrate that these outbreaks have arisen from a highly-recombining C. gattii population in the native rainforest of Northern Brazil. Thus the modern virulent C. gattii AFLP6/VGII outbreak lineages derived from mating events in South America and then dispersed to temperate regions where they cause serious infections in humans and animals.


Subject(s)
Cryptococcosis/microbiology , Cryptococcus gattii/genetics , Animals , Brazil , British Columbia/epidemiology , Cells, Cultured , Cryptococcosis/epidemiology , Cryptococcus gattii/classification , Cryptococcus gattii/pathogenicity , Disease Outbreaks , Genes, Fungal , Humans , Likelihood Functions , Macrophages/microbiology , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Multilocus Sequence Typing , Mycological Typing Techniques , Northwestern United States/epidemiology , Phylogeny , Polymorphism, Restriction Fragment Length , Trees , Tropical Climate , Virulence
7.
Phytopathology ; 103(8): 862-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23464900

ABSTRACT

The soilborne fungus Rhizoctonia solani anastomosis group 3 (AG-3PT) is a globally important potato pathogen. However, little is known about the population genetic processes affecting field populations of R. solani AG-3PT, especially in the South American Colombian Andes, which is near the center of diversity of the two most common groups of cultivated potato, Solanum tuberosum and S. phureja. We analyzed the genetic structure of 15 populations of R. solani AG-3PT infecting potato in Colombia using 11 simple-sequence repeat (SSR) markers. In total, 288 different multilocus genotypes were identified among 349 fungal isolates. Clonal fractions within field populations were 7 to 33%. RST statistics indicated a very low level of population differentiation overall, consistent with high contemporary gene flow, though moderate differentiation was found for the most distant southern populations. Genotype flow was also detected, with the most common genotype found widely distributed among field populations. All populations showed evidence of a mixed reproductive mode, including both asexual and sexual reproduction, but two populations displayed evidence of inbreeding.


Subject(s)
Genetic Structures , Genetic Variation , Genetics, Population , Microsatellite Repeats/genetics , Rhizoctonia/genetics , Solanum tuberosum/microbiology , Colombia , DNA, Fungal/genetics , Genotype , Geography , Plant Diseases/microbiology , Polymerase Chain Reaction , Rhizoctonia/isolation & purification
8.
Genet Mol Biol ; 35(2): 480-97, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22888299

ABSTRACT

The white-thread blight and black rot (WTBR) caused by basidiomycetous fungi of the genus Ceratobasidium is emerging as an important plant disease in Brazil, particularly for crop species in the Ericales such as persimmon (Diospyros kaki) and tea (Camellia sinensis). However, the species identity of the fungal pathogen associated with either of these hosts is still unclear. In this work, we used sequence variation in the internal transcribed spacer regions, including the 5.8S coding region of rDNA (ITS-5.8S rDNA), to determine the phylogenetic placement of the local white-thread-blight-associated populations of Ceratobasidium sp. from persimmon and tea, in relation to Ceratobasidium species already described world-wide. The two sister populations of Ceratobasidium sp. from persimmon and tea in the Brazilian Atlantic Forest agroecosystem most likely represent distinct species within Ceratobasidium and are also distinct from C. noxium, the etiological agent of the first description of white-thread blight disease that was reported on coffee in India. The intraspecific variation for the two Ceratobasidium sp. populations was also analyzed using three mitochondrial genes (ATP6, nad1 and nad2). As reported for other fungi, variation in nuclear and mitochondrial DNA was incongruent. Despite distinct variability in the ITS-rDNA region these two populations shared similar mitochondrial DNA haplotypes.

9.
Genetica ; 139(7): 903-8, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21751097

ABSTRACT

The ability to improve fitness via adaptive evolution may be affected by environmental change. We tested this hypothesis in an in vitro experiment with the plant pathogen Rhizoctonia solani Anastomosis Group 3 (AG-3), assessing genetic and environmental variances under two temperatures (optimal and higher than optimal) and three fungicide concentrations (no fungicide, low and high concentration of a copper-based fungicide). We measured the mean daily growth rate, the coefficient of variation for genotypic (I (G)) and environmental variance (I (E)) in growth, and broad-sense heritability in growth. Both higher temperature and increased fungicide concentration caused a decline in growth, confirming their potential as stressors for the pathogen. All types of standardized variances in growth-I (G), phenotypic variance, and I (E) as a trend-increased with elevated stress. However, heritability was not significantly higher under enhanced stress because the increase in I (G) was counterbalanced by somewhat increased I (E). The results illustrate that predictions for adaptation under environmental stress may depend on the type of short-term evolvability measure. Because mycelial growth is linked to fitness, I (G) reflects short-term evolvability better than heritability, and it indicates that the evolutionary potential of R. solani is positively affected by stress.


Subject(s)
Adaptation, Physiological , Copper/pharmacology , Fungicides, Industrial/pharmacology , Hot Temperature , Rhizoctonia/physiology , Stress, Physiological , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Analysis of Variance , Biological Evolution , Drug Resistance, Fungal , Environment , Genetic Variation/drug effects , Genotype , Hyphae/drug effects , Hyphae/growth & development , Phenotype , Plant Diseases/microbiology , Rhizoctonia/drug effects , Rhizoctonia/genetics , Rhizoctonia/growth & development , Stress, Physiological/drug effects , Switzerland
10.
Phytopathology ; 99(9): 1090-9, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19671012

ABSTRACT

ABSTRACT Sheath blight disease (SBD) on rice, caused by Rhizoctonia solani AG-1 IA, is one of the most devastating rice diseases on a global basis, including China (in Eastern Asia), the world's largest rice-growing country. We analyzed the population genetics of nine rice-infecting populations from China using nine microsatellite loci. One allopatric population from India (Southern Asia) was included in the analyses. In total, 300 different multilocus genotypes were found among 572 fungal isolates. Clonal fractions within rice fields were 16 to 95%, suggesting that sclerotia were a major source of primary inoculum in some fields. Global Phi(ST) statistics (Phi(ST) = 42.49; P

Subject(s)
Oryza/microbiology , Rhizoctonia/genetics , Base Sequence , China , DNA Primers , Genotype , Microsatellite Repeats , Rhizoctonia/pathogenicity
11.
Genet Mol Biol ; 32(4): 840-6, 2009 Oct.
Article in English | MEDLINE | ID: mdl-21637462

ABSTRACT

A series of multilocus sequence-based nuclear DNA markers was developed to infer the phylogeographical history of the Basidiomycetous fungal pathogen Rhizoctonia solani AG-1 IA infecting rice and soybean worldwide. The strategy was based on sequencing of cloned genomic DNA fragments (previously used as RFLP probes) and subsequent screening of fungal isolates to detect single nucleotide polymorphisms (SNPs). Ten primer pairs were designed based on these sequences, which resulted in PCR amplification of 200-320 bp size products and polymorphic sequences in all markers analyzed. By direct sequencing we identified both homokaryon and heterokaryon (i.e. dikaryon) isolates at each marker. Cloning the PCR products effectively estimated the allelic phase from heterokaryotic isolates. Information content varied among markers from 0.5 to 5.9 mutations per 100 bp. Thus, the former RFLP codominant probes were successfully converted into six distinctively variable sequence-based nuclear DNA markers. Rather than discarding low polymorphism loci, the combination of these distinctively variable anonymous nuclear markers would constitute an asset for the unbiased estimate of the phylogeographical parameters such as population sizes and divergent times, providing a more reliable species history that shaped the current population structure of R. solani AG-1 IA.

12.
Genet. mol. biol ; 32(4): 840-846, 2009. ilus, tab
Article in English | LILACS | ID: lil-531809

ABSTRACT

A series of multilocus sequence-based nuclear DNA markers was developed to infer the phylogeographical history of the Basidiomycetous fungal pathogen Rhizoctonia solani AG-1 IA infecting rice and soybean worldwide. The strategy was based on sequencing of cloned genomic DNA fragments (previously used as RFLP probes) and subsequent screening of fungal isolates to detect single nucleotide polymorphisms (SNPs). Ten primer pairs were designed based on these sequences, which resulted in PCR amplification of 200-320 bp size products and polymorphic sequences in all markers analyzed. By direct sequencing we identified both homokaryon and heterokaryon (i.e. dikaryon) isolates at each marker. Cloning the PCR products effectively estimated the allelic phase from heterokaryotic isolates. Information content varied among markers from 0.5 to 5.9 mutations per 100 bp. Thus, the former RFLP codominant probes were successfully converted into six distinctively variable sequence-based nuclear DNA markers. Rather than discarding low polymorphism loci, the combination of these distinctively variable anonymous nuclear markers would constitute an asset for the unbiased estimate of the phylogeographical parameters such as population sizes and divergent times, providing a more reliable species history that shaped the current population structure of R. solani AG-1 IA.

13.
Phytopathology ; 98(12): 1326-33, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19000008

ABSTRACT

Rhizoctonia solani anastomosis group (AG)-1 IA causes soybean foliar blighting (aerial blight) and rice sheath blight diseases. Although taxonomically related within the AG-1 complex, sister populations of R. solani AG-1 IA infecting Poaceae (rice) and Fabaceae (soybean) are genetically distinct based on internal transcribed spacer rDNA. However, there is currently no information available regarding the extent of genetic differentiation and host specialization between rice- and soybean-infecting populations of R. solani AG-1 IA. We used 10 microsatellite loci to compare sympatric R. solani AG-1 IA populations infecting rice and soybeans in Louisiana and one allopatric rice-infecting population from Texas. None of the 154 multilocus genotypes found among the 223 isolates were shared among the three populations. Partitioning of genetic diversity showed significant differentiation among sympatric populations from different host species (Phi(ST) = 0.39 to 0.41). Historical migration patterns between sympatric rice- and soybean-infecting populations from Louisiana were asymmetrical. Rice- and soybean-derived isolates of R. solani AG-1 IA were able to infect both rice and soybean, but were significantly more aggressive on their host of origin, consistent with host specialization. The soybean-infecting population from Louisiana was more clonal than the sympatric rice-infecting population. Most of the loci in the soybean-infecting populations were out of Hardy-Weinberg equilibrium (HWE), but the sympatric rice-infecting population from Louisiana was mainly in HWE. All populations presented evidence for a mixed reproductive system.


Subject(s)
Genetic Variation , Glycine max/microbiology , Oryza/microbiology , Rhizoctonia/genetics , Genotype , Microsatellite Repeats/genetics , Plant Diseases/microbiology , Rhizoctonia/classification , Rhizoctonia/isolation & purification
14.
BMC Evol Biol ; 7: 163, 2007 Sep 13.
Article in English | MEDLINE | ID: mdl-17854492

ABSTRACT

BACKGROUND: The soil fungus Rhizoctonia solani anastomosis group 3 (AG-3) is an important pathogen of cultivated plants in the family Solanaceae. Isolates of R. solani AG-3 are taxonomically related based on the composition of cellular fatty acids, phylogenetic analysis of nuclear ribosomal DNA (rDNA) and beta-tubulin gene sequences, and somatic hyphal interactions. Despite the close genetic relationship among isolates of R. solani AG-3, field populations from potato and tobacco exhibit comparative differences in their disease biology, dispersal ecology, host specialization, genetic diversity and population structure. However, little information is available on how field populations of R. solani AG-3 on potato and tobacco are shaped by population genetic processes. In this study, two field populations of R. solani AG-3 from potato in North Carolina (NC) and the Northern USA; and two field populations from tobacco in NC and Southern Brazil were examined using sequence analysis of two cloned regions of nuclear DNA (pP42F and pP89). RESULTS: Populations of R. solani AG-3 from potato were genetically diverse with a high frequency of heterozygosity, while limited or no genetic diversity was observed within the highly homozygous tobacco populations from NC and Brazil. Except for one isolate (TBR24), all NC and Brazilian isolates from tobacco shared the same alleles. No alleles were shared between potato and tobacco populations of R. solani AG-3, indicating no gene flow between them. To infer historical events that influenced current geographical patterns observed for populations of R. solani AG-3 from potato, we performed an analysis of molecular variance (AMOVA) and a nested clade analysis (NCA). Population differentiation was detected for locus pP89 (Phi ST = 0.257, significant at P < 0.05) but not for locus pP42F (Phi ST = 0.034, not significant). Results based on NCA of the pP89 locus suggest that historical restricted gene flow is a plausible explanation for the geographical association of clades. Coalescent-based simulations of genealogical relationships between populations of R. solani AG-3 from potato and tobacco were used to estimate the amount and directionality of historical migration patterns in time, and the ages of mutations of populations. Low rates of historical movement of genes were observed between the potato and tobacco populations of R. solani AG-3. CONCLUSION: The two sisters populations of the basidiomycete fungus R. solani AG-3 from potato and tobacco represent two genetically distinct and historically divergent lineages that have probably evolved within the range of their particular related Solanaceae hosts as sympatric species.


Subject(s)
DNA, Fungal/genetics , Genetic Variation , Phylogeny , Rhizoctonia/genetics , Solanaceae/microbiology , Cloning, Molecular , Evolution, Molecular , Genotype , Haplotypes , Likelihood Functions , Mycological Typing Techniques , Polymerase Chain Reaction , Rhizoctonia/classification , Sequence Analysis, DNA , Solanaceae/genetics , Species Specificity , Nicotiana/genetics , Nicotiana/microbiology
15.
Phytopathology ; 93(5): 610-5, 2003 May.
Article in English | MEDLINE | ID: mdl-18942984

ABSTRACT

ABSTRACT The relative contribution of migration of Rhizoctonia solani anastomosis group 3 (AG-3) on infested potato seed tubers originating from production areas in Canada, Maine, and Wisconsin (source population) to the genetic diversity and structure of populations of R. solani AG-3 in North Carolina (NC) soil (recipient population) was examined. The frequency of alleles detected by multilocus polymerase chain reaction-restriction fragment length polymorphisms, heterozygosity at individual loci, and gametic phase disequilibrium between all pairs of loci were determined for subpopulations of R. solani AG-3 from eight sources of potato seed tubers and from five soils in NC. Analysis of molecular variation revealed little variation between seed source and NC recipient soil populations or between subpopulations within each region. Analysis of population data with a Bayesian-based statistical method previously developed for detecting migration in human populations suggested that six multilocus genotypes from the NC soil population had a statistically significant probability of being migrants from the northern source population. The one-way (unidirectional) migration of genotypes of R. solani AG-3 into NC on infested potato seed tubers from Canada, Maine, and Wisconsin provides a plausible explanation for the lack of genetic subdivision (differentiation) between populations of the pathogen in NC soils or between the northern source and the NC recipient soil populations.

16.
Mycologia ; 94(3): 450-60, 2002.
Article in English | MEDLINE | ID: mdl-21156516

ABSTRACT

A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was developed to identify and differentiate genotypes of Rhizoctonia solani anastomosis group 3 subgroup PT (AG-3 PT), a fungal pathogen of potato. Polymorphic co-dominant single-locus PCR-RFLP markers were identified after sequencing of clones from a genomic library and digestion with restriction enzymes. Multilocus genotypes were determined by a combination of PCR product and digestion with a specific restriction enzyme for each of seven loci. A sample of 104 isolates from one commercial field in each of five counties in eastern North Carolina was analyzed, and evidence for high levels of gene flow between populations was revealed. When data were clone-corrected and samples pooled into one single North Carolina population, random associations of alleles were found for all loci or pairs of loci, indicating random mating. However, when all genotypes were analyzed, the observed genotypic diversity deviated from panmixia and alleles within and between loci were not randomly associated. These findings support a model of population structure for R. solani AG-3 PT on potato that includes both recombination and clonality.

17.
Mycologia ; 94(3): 437-49, 2002.
Article in English | MEDLINE | ID: mdl-21156515

ABSTRACT

Anastomosis group 3 (AG-3) of Rhizoctonia solani (teleomorph = Thanatephorus cucumeris) is frequently associated with diseases of potato (AG-3 PT) and tobacco (AG-3 TB). Although isolates of R. solani AG-3 from these two Solanaceous hosts are somatically related based on anastomosis reaction and taxonomically related based on fatty acid, isozyme and DNA characters, considerable differences are evident in their biology, ecology, and epidemiology. However, genetic diversity among field populations of R. solani AG-3 PT and TB has not been documented. In this study, the genetic diversity of field populations of R. solani AG-3 PT and AG-3 TB in North Carolina was examined using somatic compatibility and amplified fragment length polymorphism (AFLP) criteria. A sample of 32 isolates from potato and 36 isolates from tobacco were paired in all possible combinations on PDA plus activated charcoal and examined for their resulting somatic interactions. Twenty-eight and eight distinct somatic compatibility groups (SCG) were identified in the AG-3 PT and AG-3 TB samples, respectively. AFLP analyses indicated that each of the 32 AG-3 PT isolates had a distinct AFLP phenotype, whereas 28 AFLP phenotypes were found among the 36 isolates of AG-3 TB. None of the AG-3 PT isolates were somatically compatible or shared a common AFLP phenotype with any AG-3 TB isolate. Clones (i.e., cases where two or more isolates were somatically compatible and shared the same AFLP phenotype) were identified only in the AG-3 TB population. Four clones from tobacco represented 22% of the total population. All eight SCG from tobacco were associated with more than one AFLP phenotype. Compatible somatic interactions between AG-3 PT isolates occurred only between certain isolates from the same field (two isolates in each of four different fields), and when this occurred AFLP phenotypes were similar but not identical.

SELECTION OF CITATIONS
SEARCH DETAIL
...