Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(31): 12203-12212, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37487202

ABSTRACT

The MSb2 compounds with M = Cr, Fe, Ru, and Os have been investigated under high pressures by synchrotron powder X-ray diffraction. All compounds, except CrSb2, were found to retain the marcasite structure up to the highest pressures (more than 50 GPa). In contrast, we found that CrSb2 has a structural phase transition around 10 GPa to a metastable, MoP2-type structure with Cr coordinated to seven Sb atoms. In addition, we compared ambient temperature compression with laser-heating experiments and found that laser-heating at pressures below and above this phase transition results in the known CuAl2-type structure. Density functional theory calculations show that this tetragonal structure is the most stable in the whole pressure interval. However, a crossing of the marcasite's and MoP2-like structure's enthalpies occurs between 5 and 7.5 GPa, which is in good agreement with the experimental data. The phase transition to the MoP2-type structure observed in this work opens up for discovering other compounds with this new transition pathway from the marcasite structure.

2.
Inorg Chem ; 61(48): 19088-19096, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36383925

ABSTRACT

Using a recently developed method for in situ high-pressure, laser heating experiments in diamond anvil cells, we obtained a novel post-perovskite phase of SrOsO3. The phase transition from perovskite SrOsO3 was induced at 44 GPa and 1350 K in a diamond anvil cell and characterized with synchrotron powder X-ray diffraction. The newly obtained post-perovskite is quenchable and Le Bail refinements under ambient conditions yielded the unit cell parameters: a = 3.152(9) Å, b = 10.82(2) Å, c = 7.27(1) Å, V = 248.1(1) Å3. In addition, the compression of perovskite SrOsO3 at ambient temperature was investigated up to 66 GPa in a diamond anvil cell using synchrotron powder X-ray diffraction. The compression at ambient temperature showed that pressure alone does not induce the first-order phase transition to the post-perovskite structure. However, at 36 GPa, a continuous phase transition to monoclinic (P21/n) symmetry was detected, persistent up to 58 GPa, where the perovskite transitioned back to orthorhombic (Pbnm) symmetry. Fitting a third-order Birch-Murnaghan equation of state to the obtained P-V data for perovskite SrOsO3 yielded a bulk modulus of K0 = 187.4(15) GPa. Density functional theory calculations were performed to support the experimental findings in the compression study at ambient temperature. This work shows that transformations to the post-perovskite structure can be obtained for a wider range of perovskites than simple empirical rules otherwise suggest.

3.
Nanomaterials (Basel) ; 12(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36234513

ABSTRACT

We present a combined real and reciprocal space structural and microstructural characterization of CeO2 nanoparticles (NPs) exhibiting different crystallite sizes; ~3 nm CeO2 NPs were produced by an inverse micellae wet synthetic path and then annealed at different temperatures. X-ray total scattering data were analyzed by combining real-space-based Pair Distribution Function analysis and the reciprocal-space-based Debye Scattering Equation method with atomistic models. Subtle atomic-scale relaxations occur at the nanocrystal surface. The structural analysis was corroborated by ab initio DFT and force field calculations; micro-Raman and electron spin resonance added important insights to the NPs' defective structure. The combination of the above techniques suggests a core-shell like structure of ultrasmall NPs. These exhibit an expanded outer shell having a defective fluorite structure, while the inner shell is similar to the bulk structure. The presence of partially reduced O2-δ species testifies to the high surface activity of the NPs. On increasing the annealing temperature, the particle dimensions increase, limiting disorder as a consequence of the progressive surface-to-volume ratio reduction.

4.
Materials (Basel) ; 15(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35591680

ABSTRACT

Computational methods are increasingly used to support interpreting, assigning and predicting the solid-state nuclear resonance magnetic spectra of materials. Currently, density functional theory is seen to achieve a good balance between efficiency and accuracy in solid-state chemistry. To be specific, density functional theory allows the assignment of signals in nuclear resonance magnetic spectra to specific sites and can help identify overlapped or missing signals from experimental nuclear resonance magnetic spectra. To avoid the difficulties correlated to all-electron calculations, a gauge including the projected augmented wave method was introduced to calculate nuclear resonance magnetic parameters with great success in organic crystals in the last decades. Thus, we developed a gauge including projected augmented pseudopotentials of 21 d elements and tested them on, respectively, oxides or nitrides (semiconductors), calculating chemical shift and quadrupolar coupling constant. This work can be considered the first step to improving the ab initio prediction of nuclear magnetic resonance parameters, and leaves open the possibility for inorganic compounds to constitute an alternative standard compound, with respect to tetramethylsilane, to calculate the chemical shift. Furthermore, this work represents the possibility to obtain results from first-principles calculations, to train a machine-learning model to solve or refine structures using predicted nuclear magnetic resonance spectra.

5.
J Phys Chem A ; 125(21): 4524-4533, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34019398

ABSTRACT

A quantitative study on inelastic electron scattering with a molecule is of significant importance for understanding the essential mechanisms of electron-induced gas-phase and surface chemical reactions in their excited electronic states. A key issue to be addressed is the quantitatively detailed inelastic electron collision processes with a realistic molecular target, associated with electron excitation that leads to potential ionization and dissociation reactions of the molecule. Using the real-time time-dependent density functional theory (TDDFT) modeling, we present quantitative findings on the energy transfers and internal excitations for the low energy (up to 270 eV) electron wave packet impact with the molecular target cobalt tricarbonyl nitrosyl (CTN, Co(CO)3NO) that is used as a precursor in electron-enhanced atomic layer deposition (EE-ALD) growth of Co films. Our modeling shows the quantitative dependence of the wave packet sizes, target molecule orientations, and impact parameters on the energy transfer in this inelastic electron scattering process. It is found that the wave packet sizes have little effect on the overall profile of the internal multiple excited states, whereas different target orientations can cause significantly different internal excited states. To evaluate the quantitative prediction capability, the inelastic scattering cross-section of a hydrogen atom is calculated and compared with the experimental data, leading to a constant scaling factor over the whole energy range. The present study demonstrates the remarkable potential of TDDFT for simulating the inelastic electron scattering process, which provides critical information for future exploration of electronic excitations in a wide range of electron-induced chemical reactions in current technological applications.

6.
Nanomaterials (Basel) ; 10(5)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365930

ABSTRACT

Here we report on the impact of reducing the crystalline size on the structural and magnetic properties of γ-Fe2O3 maghemite nanoparticles. A set of polycrystalline specimens with crystallite size ranging from ~2 to ~50 nm was obtained combining microwave plasma synthesis and commercial samples. Crystallite size was derived by electron microscopy and synchrotron powder diffraction, which was used also to investigate the crystallographic structure. The local atomic structure was inquired combining pair distribution function (PDF) and X-ray absorption spectroscopy (XAS). PDF revealed that reducing the crystal dimension induces the depletion of the amount of Fe tetrahedral sites. XAS confirmed significant bond distance expansion and a loose Fe-Fe connectivity between octahedral and tetrahedral sites. Molecular dynamics revealed important surface effects, whose implementation in PDF reproduces the first shells of experimental curves. The structural disorder affects the magnetic properties more and more with decreasing the nanoparticle size. In particular, the saturation magnetization reduces, revealing a spin canting effect. Moreover, a large effective magnetic anisotropy is measured at low temperature together with an exchange bias effect, a behavior that we related to the existence of a highly disordered glassy magnetic phase.

7.
J Chem Theory Comput ; 16(2): 1188-1199, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-31860292

ABSTRACT

Cyclometalated Ir(III) compounds are the preferred choice as organic emitters in organic light-emitting diodes. In practice, the presence of the transition metal surrounded by carefully designed ligands allows fine-tuning of the emission frequency as well as good efficiency of the device. To support the development of new compounds, experimental measurements are generally compared with absorption and emission spectra obtained from ab initio calculations. The standard approach for these calculations is time-dependent density functional theory (TDDFT) with a hybrid exchange-correlation functional like B3LYP. Because of the size of these compounds, the application of more complex quantum chemistry approaches can be challenging. In this work, we used many-body perturbation theory approaches, in particular the GW approximation with the Bethe-Salpeter equation (BSE) implemented in Gaussian basis sets, to calculate the quasiparticle properties and the absorption spectra of six cyclometalated Ir(III) complexes, going beyond TDDFT. In the presented results, we compared standard TDDFT simulations with BSE calculations performed on top of perturbative G0W0 and accounting for eigenvalue self-consistency. Moreover, in order to investigate in detail the effect of the DFT starting point, we concentrated on Ir(ppy)3 and performed GW-BSE simulations starting from different DFT exchange-correlation potentials.

8.
Front Chem ; 6: 526, 2018.
Article in English | MEDLINE | ID: mdl-30430105

ABSTRACT

The need for high efficiency energy production, conversion, storage and transport is serving as a robust guide for the development of new materials. Materials with physical-chemical properties matching specific functions in devices are produced by suitably tuning the crystallographic- defect- and micro-structure of the involved phases. In this review, we discuss the case of Rare Earth doped Ceria. Due to their high oxygen diffusion coefficient at temperatures higher than ~500°C, they are very promising materials for several applications such as electrolytes for Solid Oxide Fuel and Electrolytic Cells (SOFC and SOEC, respectively). Defects are integral part of the conduction process, hence of the final application. As the fluorite structure of ceria is capable of accommodating a high concentration of lattice defects, the characterization and comprehension of such complex and highly defective materials involve expertise spanning from computational chemistry, physical chemistry, catalysis, electrochemistry, microscopy, spectroscopy, and crystallography. Results coming from different experimental and computational techniques will be reviewed, showing that structure determination (at different scale length) plays a pivotal role bridging theoretical calculation and physical properties of these complex materials.

9.
Materials (Basel) ; 11(10)2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30340431

ABSTRACT

We report the electronic, magnetic and transport properties of a prototypical antiferromagnetic (AFM) spintronic device. We chose Cr as the active layer because it is the only room-temperature AFM elemental metal. We sandwiched Cr between two non-magnetic metals (Pt or Au) with large spin-orbit coupling. We also inserted a buffer layer of insulating MgO to mimic the structure and finite resistivity of a real device. We found that, while spin-orbit has a negligible effect on the current flowing through the device, the MgO layer plays a crucial role. Its effect is to decouple the Cr magnetic moment from Pt (or Au) and to develop an overall spin magnetization. We have also calculated the spin-polarized ballistic conductance of the device within the Büttiker⁻Landauer framework, and we have found that for small applied bias our Pt/Cr/MgO/Pt device presents a spin polarization of the current amounting to ≃25%.

10.
Photochem Photobiol Sci ; 17(9): 1169-1178, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30047955

ABSTRACT

ß-Diketones are an important class of bidentate cyclometalating compounds, used in organometallic chemistry as ancillary ligands because of their wide commercial availability and easy synthesis. They are employed to finely tune the electronic, spectroscopic and physical properties of metal complexes. Heteroleptic iridium complexes often benefit from the use of ß-diketonate ligands, their properties being similar to those of the corresponding homoleptic tris-cyclometalated ones. Nevertheless, in some cases, their use results in a complete quenching of the phosphorescence. Aiming to understand the origin of this drawback, we designed a suitable class of heteroleptic complexes and studied their thermal stability (DSC/TGA). We explored the effect of the ancillary ligand in a series of Ir(iii) complexes bearing 2-phenylpyridine (ppy) as a cyclometalated ligand and acac (acetylacetonate), tta (2-thienoyltrifluoroacetonate), dtdk (1,3-di(thiophen-2-yl)propane-1,3-dionate) and BPhen (4,7-diphenyl-1,10-phenanthroline) as ancillary ligands. Through photochemical and electrochemical investigations, whose results agree with and support our density functional theory calculations, we demonstrate that ß-diketonate ligands with low triplet energy generate dark triplet excited states with negligible coupling to the ground state which indeed promote non-radiative relaxation through population of higher states.

11.
J Phys Condens Matter ; 30(27): 275501, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29809166

ABSTRACT

We show that efficient norm-conserving pseudopotentials for electronic structure calculations can be obtained from a polynomial Ansatz for the potential. Our pseudopotential is a polynomial of degree ten in the radial variable and fulfils the same smoothness conditions imposed by the Troullier-Martins method (TM) (1991 Phys. Rev. B 43 1993) where pseudopotentials are represented by a polynomial of degree twenty-two. We compare our method to the TM approach in electronic structure calculations for diamond and iron in the bcc structure and find that the two methods perform equally well in calculations of the total energy. However, first and second derivatives of the total energy with respect to atomic coordinates converge significantly faster with the plane wave cutoff if the standard TM potentials are replaced by the pseudopotentials introduced here.

12.
IUCrJ ; 5(Pt 3): 335-347, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29755749

ABSTRACT

The structural origin of absorption and fluorescence anisotropy of the single crystal of the π-conjugated heterocyclic system 5,6,10b-tri-aza-acephenan-thrylene, TAAP, is presented in this study. X-ray analysis shows that the crystal framework in the space group P [Formula: see text] is formed by centrosymmetric dimers of face-to-face mutually oriented TAAP molecules joined by π-π non-covalent interactions. The conformation of the TAAP molecule is stabilized by intramolecular C-H⋯N(sp2), N(sp2)H⋯π(CN), and C-H⋯O(sp2) hydrogen bonds. The presence of weak π-π interactions is confirmed by quantum theory of atoms in molecules (QTAIM) and non-covalent interaction (NCI) analysis. The analysis of the optical spectra of TAAP in solution and in the solid state does not allow the specification of the aggregation type. DFT calculations for the dimer in the gas phase indicate that the lowest singlet excitation is forbidden by symmetry, suggesting H-type aggregation, even though the overall absorption spectrum is bathochromically shifted as for the J-type. The experimental determination of the permanent dipole moment of a TAAP molecule in 1,4-dioxane solution indicates the presence of the monomer form. The calculated absorption and emission spectra of the crystal in a simple approximation are consistent with the experimentally determined orientation of the absorption and emission transition dipole moments in TAAP single crystals. The electrostatic interaction between monomers with a permanent dipole moment (ca 4 D each) could result in the unusual spectroscopic JH-aggregate behaviour of the TAAP dimer.

13.
Photochem Photobiol Sci ; 16(8): 1220-1229, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28677718

ABSTRACT

Iridium complexes bearing cyclometalated (C^N) ligands are the current emitters of choice for efficient phosphorescent organic light emitting diodes (OLEDs). Homoleptic iridium complexes Ir(C^N)3 and the analogous heteroleptic ones carrying a ß-diketonate ancillary ligand (C^N)2Ir(O^O) often exhibit similar photophysical properties and device performances; the choice among them usually depends both on the yield/ease of the respective synthetic preparations as well as on the device fabrication methods (i.e. vacuum-deposition or solution-process). In our recent study we found a significant spectral red shift on going from the homoleptic to the ß-diketonate Ir(iii) derivatives. The NIR emitting complex Ir(iqbt)2dpm (λmax = 710 nm) has almost 20 nm red shifted emission compared to the homologue Ir(iqbt)3 making only the former a real NIR emitter. For comparison, we studied the Pt(iqbt)dpm complex as the suitable example to investigate metal ligand interactions. Noteworthily the Pt(iqbt)dpm emission perfectly overlaps that of the Ir(iqbt)2dpm. In this paper we provide an in-depth investigation of these systems by electrochemical and spectroscopic analyses and corroborate the results with DFT and TDDFT calculations to investigate whether the Pt(ii) complex can be used as a model system to predict how far the emission can be pushed in a Ir(iii) heteroleptic derivative bearing the same C^N ligand.

14.
J Comput Chem ; 37(23): 2133-9, 2016 09 05.
Article in English | MEDLINE | ID: mdl-27364862

ABSTRACT

The source function (SF) is a topological descriptor that was introduced and developed by C. Gatti and R.W. Bader in 1998. The SF describes the contribution of each atom to the total electron density at a given point. To date, this descriptor has only been calculable from electron densities generated by all-electron (AE) methods for the investigation of single molecules or periodic systems. This study broadens the accessibility of the SF, offering its calculation from electron densities generated by plane wave (PW) methods. The new algorithm has been implemented in the open source code, CRITIC2. Our novel approach has been validated on a series of test systems, comparing the results obtained at PW level with those previously obtained through AE methods. © 2016 Wiley Periodicals, Inc.

15.
J Chem Phys ; 144(23): 234105, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27334152

ABSTRACT

In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange-correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH(•) radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH(•) radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.

16.
Angew Chem Int Ed Engl ; 55(8): 2714-8, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26804423

ABSTRACT

Three NIR-emitting neutral Ir(III) complexes [Ir(iqbt)2 (dpm)] (1), [Ir(iqbt)2 (tta)] (2), and [Ir(iqbt)2 (dtdk)] (3) based on the 1-(benzo[b]thiophen-2-yl)-isoquinolinate (iqtb) were synthesized and characterized (dpm=2,2,6,6-tetramethyl-3,5-heptanedionate; tta=2-thienoyltrifluoroacetonate; dtdk=1,3-di(thiophen-2-yl)propane-1,3-dionate). The compounds emit between λ=680 and 850 nm with high luminescence quantum yields (up to 16 %). By combining electrochemistry, photophysical measurements, and computational modelling, the relationship between the structure, energy levels, and properties were investigated. NIR-emitting, solution-processed phosphorescent organic light-emitting devices (PHOLEDs) were fabricated using the complexes. The devices show remarkable external quantum efficiencies (above 3 % with 1) with negligible efficiency roll-off values, exceeding the highest reported values for solution-processible NIR emitters.

17.
J Chem Phys ; 142(15): 154116, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25903875

ABSTRACT

We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.

18.
J Chem Phys ; 141(17): 174101, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25381496

ABSTRACT

By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn-Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn-Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.

19.
Solid State Nucl Magn Reson ; 45-46: 59-65, 2012.
Article in English | MEDLINE | ID: mdl-22770669

ABSTRACT

NMR is the technique of election to probe the local properties of materials. Herein we present the results of density functional theory (DFT) ab initio calculations of the NMR parameters for fluorapatite (FAp), a calcium orthophosphate mineral belonging to the apatite family, by using the GIPAW method (Pickard and Mauri, 2001). Understanding the local effects of pressure on apatites is particularly relevant because of their important role in many solid state and biomedical applications. Apatites are open structures, which can undergo complex anisotropic deformations, and the response of NMR can elucidate the microscopic changes induced by an applied pressure. The computed NMR parameters proved to be in good agreement with the available experimental data. The structural evaluation of the material behavior under hydrostatic pressure (from -5 to +100 kbar) indicated a shrinkage of the diameter of the apatitic channel, and a strong correlation between NMR shielding and pressure, proving the sensitivity of this technique to even small changes in the chemical environment around the nuclei. This theoretical approach allows the exploration of all the different nuclei composing the material, thus providing a very useful guidance in the interpretation of experimental results, particularly valuable for the more challenging nuclei such as (43)Ca and (17)O.

20.
J Phys Condens Matter ; 21(39): 395502, 2009 Sep 30.
Article in English | MEDLINE | ID: mdl-21832390

ABSTRACT

QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

SELECTION OF CITATIONS
SEARCH DETAIL
...