Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 16: 1020546, 2022.
Article in English | MEDLINE | ID: mdl-36466163

ABSTRACT

Muscles are the actuators of all human actions, from daily work and life to communication and expression of emotions. Myography records the signals from muscle activities as an interface between machine hardware and human wetware, granting direct and natural control of our electronic peripherals. Regardless of the significant progression as of late, the conventional myographic sensors are still incapable of achieving the desired high-resolution and non-invasive recording. This paper presents a critical review of state-of-the-art wearable sensing technologies that measure deeper muscle activity with high spatial resolution, so-called super-resolution. This paper classifies these myographic sensors according to the different signal types (i.e., biomechanical, biochemical, and bioelectrical) they record during measuring muscle activity. By describing the characteristics and current developments with advantages and limitations of each myographic sensor, their capabilities are investigated as a super-resolution myography technique, including: (i) non-invasive and high-density designs of the sensing units and their vulnerability to interferences, (ii) limit-of-detection to register the activity of deep muscles. Finally, this paper concludes with new opportunities in this fast-growing super-resolution myography field and proposes promising future research directions. These advances will enable next-generation muscle-machine interfaces to meet the practical design needs in real-life for healthcare technologies, assistive/rehabilitation robotics, and human augmentation with extended reality.

2.
Philos Trans A Math Phys Eng Sci ; 380(2228): 20210009, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35658678

ABSTRACT

Implantable electronic neural interfaces typically take the form of probes and are made with rigid materials such as silicon and metals. These have advantages such as compatibility with integrated microchips, simple implantation and high-density nanofabrication but tend to be lacking in terms of biointegration, biocompatibility and durability due to their mechanical rigidity. This leads to damage to the device or, more importantly, the brain tissue surrounding the implant. Flexible polymer-based probes offer superior biocompatibility in terms of surface biochemistry and better matched mechanical properties. Research which aims to bring the fabrication of electronics on flexible polymer substrates to the nano-regime is remarkably sparse, despite the push for flexible consumer electronics in the last decade or so. Cleanroom-based nanofabrication techniques such as photolithography have been used as pattern transfer methods by the semiconductor industry to produce single nanometre scale devices and are now also used for making flexible circuit boards. There is still much scope for miniaturizing flexible electronics further using photolithography, bringing the possibility of nanoscale, non-invasive, high-density flexible neural interfacing. This work explores the fabrication challenges of using photolithography and complementary techniques in a cleanroom for producing flexible electronic neural probes with nanometre-scale features. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.


Subject(s)
Electronics , Polymers , Brain , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...