Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 905: 167285, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37748608

ABSTRACT

The study is aimed at determining the potential spatiotemporal risk of the co-occurrence of airborne pollen and fungal spores high concentrations in different bio-climatic zones in Europe. Birch, grass, mugwort, ragweed, olive pollen and Alternaria and Cladosporium fungal spores were investigated at 16 sites in Europe, in 2005-2019. In Central and northern Europe, pollen and fungal spore seasons mainly overlap in June and July, while in South Europe, the highest pollen concentrations occur frequently outside of the spore seasons. In the coldest climate, no allergy thresholds were exceeded simultaneously by two spore or pollen taxa, while in the warmest climate most of the days with at least two pollen taxa exceeding threshold values were observed. The annual air temperature amplitude seems to be the main bioclimatic factor influencing the accumulation of days in which Alternaria and Cladosporium spores simultaneously exceed allergy thresholds. The phenomenon of co-occurrence of airborne allergen concentrations gets increasingly common in Europe and is proposed to be present on other continents, especially in temperate climate.


Subject(s)
Allergens , Hypersensitivity , Spores, Fungal , Pollen , Seasons , Europe , Cladosporium , Alternaria , Air Microbiology
2.
Sci Rep ; 12(1): 15921, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36151263

ABSTRACT

In this work, we investigate the correlation between ragweed pollen concentration and conjunctival, nasal, and asthma symptom severity in patients allergic to ragweed pollen using ambient pollen exposure in the Milan area during the 2014 ragweed season We calculate the pollen/symptom thresholds and we assess the effectiveness of ragweed allergen immunotherapy (AIT). A total of 66 participants allergic to ragweed (Amb a 1) were enrolled in the study and divided into two groups: AIT treated (24) and no AIT treated (42). Pollen counts and daily symptom/medication patient diaries were kept. Autoregressive distributed lag models were used to develop predictive models of daily symptoms and evaluate the short-term effects of temporal variations in pollen concentration on the onset of symptoms. We found significant correlations between ragweed pollen load and the intensity of symptoms for all three symptom categories, both in no AIT treated (τ = 0.341, 0.352, and 0.721; and ρ = 0.48, 0.432, and 0.881; p-value < 0.001) and in AIT treated patients ([Formula: see text]= 0.46, 0.610, and 0.66; and ρ = 0.692, 0.805, and 0.824; p-value < 0.001). In both groups, we observed a positive correlation between the number of symptoms reported and drug use. Mean symptom levels were significantly higher in no AIT treated than in AIT treated patients (p-value < 0.001) for all symptom categories. Pollen concentration thresholds for the four symptom severity levels (low, medium-low, medium-high and high) were calculated. Ragweed pollen concentration is predictive of symptom severity in patients with a ragweed (Amb a 1) allergy. Patients treated with AIT had significantly reduced mean symptom levels compared to those without AIT.


Subject(s)
Allergens , Asthma , Conjunctivitis , Rhinitis, Allergic, Seasonal , Ambrosia , Antigens, Plant , Asthma/chemically induced , Asthma/therapy , Conjunctivitis/chemically induced , Humans , Plant Extracts , Rhinitis, Allergic, Seasonal/drug therapy , Seasons
3.
Euro Surveill ; 25(20)2020 05.
Article in English | MEDLINE | ID: mdl-32458793

ABSTRACT

In July 2018, a large outbreak of Legionnaires' disease (LD) caused by Legionella pneumophila serogroup 1 (Lp1) occurred in Bresso, Italy. Fifty-two cases were diagnosed, including five deaths. We performed an epidemiological investigation and prepared a map of the places cases visited during the incubation period. All sites identified as potential sources were investigated and sampled. Association between heavy rainfall and LD cases was evaluated in a case-crossover study. We also performed a case-control study and an aerosol dispersion investigation model. Lp1 was isolated from 22 of 598 analysed water samples; four clinical isolates were typed using monoclonal antibodies and sequence-based typing. Four Lp1 human strains were ST23, of which two were Philadelphia and two were France-Allentown subgroup. Lp1 ST23 France-Allentown was isolated only from a public fountain. In the case-crossover study, extreme precipitation 5-6 days before symptom onset was associated with increased LD risk. The aerosol dispersion model showed that the fountain matched the case distribution best. The case-control study demonstrated a significant eightfold increase in risk for cases residing near the public fountain. The three studies and the matching of clinical and environmental Lp1 strains identified the fountain as the source responsible for the epidemic.


Subject(s)
Disease Outbreaks , Legionella pneumophila/classification , Legionella pneumophila/genetics , Legionnaires' Disease/epidemiology , Legionnaires' Disease/microbiology , Aged , Case-Control Studies , Cross-Over Studies , Humans , Italy/epidemiology , Legionella pneumophila/isolation & purification , Legionnaires' Disease/diagnosis , Male , Middle Aged , Molecular Typing , Sequence Analysis, DNA , Serogroup , Serotyping
SELECTION OF CITATIONS
SEARCH DETAIL
...