Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hortic Res ; 8(1): 241, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34719687

ABSTRACT

In horticulture, grafting is a popular technique used to combine positive traits from two different plants. This is achieved by joining the plant top part (scion) onto a rootstock which contains the stem and roots. Rootstocks can provide resistance to stress and increase plant production, but despite their wide use, the biological mechanisms driving rootstock-induced alterations of the scion phenotype remain largely unknown. Given that epigenetics plays a relevant role during distance signalling in plants, we studied the genome-wide DNA methylation changes induced in eggplant (Solanum melongena) scion using two interspecific rootstocks to increase vigour. We found that vigour was associated with a change in scion gene expression and a genome-wide hypomethylation in the CHH context. Interestingly, this hypomethylation correlated with the downregulation of younger and potentially more active long terminal repeat retrotransposable elements (LTR-TEs), suggesting that graft-induced epigenetic modifications are associated with both physiological and molecular phenotypes in grafted plants. Our results indicate that the enhanced vigour induced by heterografting in eggplant is associated with epigenetic modifications, as also observed in some heterotic hybrids.

2.
Methods Mol Biol ; 2093: 47-64, 2020.
Article in English | MEDLINE | ID: mdl-32088888

ABSTRACT

Methylation context sensitive enzyme ddRAD (MCSeEd) is a NGS-based method for genome-wide investigations of DNA methylation at different contexts requiring only low to moderate sequencing depth. It is particularly useful for identifying methylation changes in experimental systems challenged by biotic or abiotic stresses or at different developmental stages.


Subject(s)
DNA Methylation/genetics , Zea mays/genetics , DNA, Plant/genetics , Epigenesis, Genetic/genetics , Genome, Plant/genetics , Stress, Physiological/genetics
3.
Genes (Basel) ; 10(4)2019 04 01.
Article in English | MEDLINE | ID: mdl-30939865

ABSTRACT

Globe artichoke represents one of the main horticultural species of the Mediterranean basin, and 'Spinoso sardo' is the most widespread and economically relevant varietal type in Sardinia, Italy. In the last decades, in vitro culture of meristematic apices has increased the frequency of aberrant plants in open-field production. These off-type phenotypes showed highly pinnate-parted leaves and late inflorescence budding, and emerged from some branches of the true-to-type 'Spinoso sardo' plants. This phenomenon cannot be foreseen and is reversible through generations, suggesting the occurrence of epigenetic alterations. Here, we report an exploratory study on DNA methylation patterns in off-type/true-to-type globe artichoke plants, using a modified EpiRADseq technology, which allowed the identification of 2,897 differentially methylated loci (DML): 1,998 in CG, 458 in CHH, and 441 in CHG methylation contexts of which 720, 88, and 152, respectively, were in coding regions. Most of them appeared involved in primary metabolic processes, mostly linked to photosynthesis, regulation of flower development, and regulation of reproductive processes, coherently with the observed phenotype. Differences in the methylation status of some candidate genes were integrated with transcriptional analysis to test whether these two regulation levels might interplay in the emergence and spread of the 'Spinoso sardo' non-conventional phenotype.


Subject(s)
Cynara scolymus/genetics , DNA Methylation/genetics , Epigenomics , Meristem/genetics , Cell Division/genetics , Gene Expression Regulation, Plant , Italy , Meristem/growth & development , Phenotype , Plant Leaves , Reproduction/genetics
4.
Nucleic Acids Res ; 47(3): 1311-1320, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30476196

ABSTRACT

Pack-TYPE transposons are a unique class of potentially mobile non-autonomous elements that can capture, merge and relocate fragments of chromosomal DNA. It has been postulated that their activity accelerates the evolution of host genes. However, this important presumption is based only on the sequences of currently inactive Pack-TYPE transposons and the acquisition of chromosomal DNA has not been recorded in real time. Analysing the DNA copy number variation in hypomethylated Arabidopsis lines, we have now for the first time witnessed the mobilization of novel Pack-TYPE elements related to the CACTA transposon family, over several plant generations. Remarkably, these elements can insert into genes as closely spaced direct repeats and they frequently undergo incomplete excisions, resulting in the deletion of one of the end sequences. These properties suggest a mechanism of efficient acquisition of genic DNA residing between neighbouring Pack-TYPE transposons and its subsequent mobilization. Our work documents crucial steps in the formation of in vivo novel Pack-TYPE transposons, and thus the possible mechanism of gene shuffling mediated by this type of mobile element.


Subject(s)
Arabidopsis/genetics , DNA Copy Number Variations/genetics , DNA Methylation/genetics , DNA Transposable Elements/genetics , Chromosomes, Plant/genetics , Genome, Plant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL