Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Biol ; 34(9): R371-R379, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38714168

ABSTRACT

The global restoration agenda can help solve the biodiversity extinction crisis by regenerating biodiversity-rich ecosystems, maximising conservation benefits using natural regeneration. Yet, conservation is rarely the core objective of restoration, and biodiversity is often neglected in restoration projects targeted towards carbon sequestration or enhancing ecosystem services for improved local livelihoods. Here, we synthesise evidence to show that promoting biodiversity in restoration planning and delivery is integral to delivering other long-term restoration aims, such as carbon sequestration, timber production, enhanced local farm yields, reduced soil erosion, recovered hydrological services and improved human health. For each of these restoration goals, biodiversity must be a keystone objective to the entire process. Biodiversity integration requires improved evidence and action, delivered via a socio-ecological process operating at landscape scales and backed by supportive regulations and finance. Conceiving restoration and biodiversity conservation as synergistic, mutually reinforcing partners is critical for humanity's bids to tackle the global crises of climate change, land degradation and biodiversity extinction.


Subject(s)
Biodiversity , Conservation of Natural Resources , Conservation of Natural Resources/methods , Climate Change , Ecosystem , Environmental Restoration and Remediation/methods , Carbon Sequestration
2.
Glob Chang Biol ; 30(3): e17208, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38441414

ABSTRACT

Substantial global restoration commitments are occurring alongside a rapid expansion in land-hungry tropical commodities, including to supply increasing demand for wood products. Future commercial tree plantations may deliver high timber yields, shrinking the footprint of production forestry, but there is an as-yet unquantified risk that plantations may expand into priority restoration areas, with marked environmental costs. Focusing on Brazil-a country of exceptional restoration importance and one of the largest tropical timber producers-we use random forest models and information on the economic, social, and spatial drivers of historic commercial tree plantation expansion to estimate and map the probability of future monoculture tree plantation expansion between 2020 and 2030. We then evaluate potential plantation-restoration conflicts and opportunities at national and biome-scales and under different future production and restoration pathways. Our simulations show that of 2.8 Mha of future plantation expansion (equivalent to plantation expansion 2010-2020), ~78,000 ha (3%) is forecast to occur in the top 1% of restoration priority areas for terrestrial vertebrates, with ~547,500 ha (20%) and ~1,300,000 ha (46%) in the top 10% and 30% of priority areas, respectively. Just ~459,000 ha (16%) of expansion is forecast within low-restoration areas (bottom 30% restoration priorities), and the first 1 Mha of plantation expansion is likely to have disproportionate impacts, with potential restoration-plantation overlap starkest in the Atlantic Forest but prominent in the Pampas and Cerrado as well. Our findings suggest that robust, coherent land-use policies must be deployed to ensure that significant trade-offs between restoration and production objectives are navigated, and that commodity expansion does not undermine the most tractable conservation gains under emerging global restoration agendas. They also highlight the potentially significant role an engaged forestry sector could play in improving biodiversity outcomes in restoration projects in Brazil, and presumably elsewhere.


Subject(s)
Biodiversity , Ecosystem , Animals , Brazil , Forestry , Probability
4.
Curr Biol ; 31(19): R1326-R1341, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34637743

ABSTRACT

The UN Decade on Ecosystem Restoration offers immense potential to return hundreds of millions of hectares of degraded tropical landscapes to functioning ecosystems. Well-designed restoration can tackle multiple Sustainable Development Goals, driving synergistic benefits for biodiversity, ecosystem services, agricultural and timber production, and local livelihoods at large spatial scales. To deliver on this potential, restoration efforts must recognise and reduce trade-offs among objectives, and minimize competition with food production and conservation of native ecosystems. Restoration initiatives also need to confront core environmental challenges of climate change and inappropriate planting in savanna biomes, be robustly funded over the long term, and address issues of poor governance, inadequate land tenure, and socio-cultural disparities in benefits and costs. Tackling these issues using the landscape approach is vital to realising the potential for restoration to break the cycle of land degradation and poverty, and deliver on its core environmental and social promises.


Subject(s)
Conservation of Natural Resources , Ecosystem , Agriculture , Biodiversity , Forests
SELECTION OF CITATIONS
SEARCH DETAIL