Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Heliyon ; 10(9): e30520, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756586

ABSTRACT

Persistent HGF/Met signaling drives tumor growth and dissemination. Proteoglycans within the tumor microenvironment might control HGF availability and signaling by affecting its accessibility to Met (HGF receptor), likely defining whether acute or sustained HGF/Met signaling cues take place. Given that betaglycan (BG, also known as type III TGFß receptor or TGFBR3), a multi-faceted proteoglycan TGFß co-receptor, can be found within the tumor microenvironment, we addressed its hypothetical role in oncogenic HGF signaling. We found that HGF/Met promotes lung cancer and endothelial cells migration via PI3K and mTOR. This effect was enhanced by recombinant soluble betaglycan (solBG) via a mechanism attributable to its glycosaminoglycan chains, as a mutant without them did not modulate HGF effects. Moreover, soluble betaglycan extended the effect of HGF-induced phosphorylation of Met, Akt, and Erk, and membrane recruitment of the RhoGEF P-Rex1. Data-mining analysis of lung cancer patient datasets revealed a significant correlation between high MET receptor, HGF, and PREX1 expression and reduced patient survival. Soluble betaglycan showed biochemical interaction with HGF and, together, they increased tumor growth in immunocompetent mice. In conclusion, the oncogenic properties of the HGF/Met pathway are enhanced and sustained by GAG-containing soluble betaglycan.

2.
Int J Mol Sci ; 24(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38139359

ABSTRACT

The serine-threonine kinase Akt plays a fundamental role in cell survival, metabolism, proliferation, and migration. To keep these essential processes under control, Akt activity and stability must be tightly regulated; otherwise, life-threatening conditions might prevail. Although it is well understood that phosphorylation regulates Akt activity, much remains to be known about how its stability is maintained. Here, we characterize BAG5, a chaperone regulator, as a novel Akt-interactor and substrate that attenuates Akt stability together with Hsp70. BAG5 switches monoubiquitination to polyubiquitination of Akt and increases its degradation caused by Hsp90 inhibition and Hsp70 overexpression. Akt interacts with BAG5 at the linker region that joins the first and second BAG domains and phosphorylates the first BAG domain. The Akt-BAG5 complex is formed in serum-starved conditions and dissociates in response to HGF, coincident with BAG5 phosphorylation. BAG5 knockdown attenuated Akt degradation and facilitated its activation, whereas the opposite effect was caused by BAG5 overexpression. Altogether, our results indicate that Akt stability and signaling are dynamically regulated by BAG5, depending on growth factor availability.


Subject(s)
Molecular Chaperones , Proto-Oncogene Proteins c-akt , HSP70 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Ubiquitination , HEK293 Cells , Humans , Animals , Mice
3.
Int J Mol Sci ; 24(21)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37958718

ABSTRACT

Oncogenic Gαq causes uveal melanoma via non-canonical signaling pathways. This constitutively active mutant GTPase is also found in cutaneous melanoma, lung adenocarcinoma, and seminoma, as well as in benign vascular tumors, such as congenital hemangiomas. We recently described that PDZ-RhoGEF (also known as ARHGEF11), a canonical Gα12/13 effector, is enabled by Gαs Q227L to activate CdcIn addition, and we demonstrated that constitutively active Gαq interacts with the PDZ-RhoGEF DH-PH catalytic module, but does not affect its binding to RhoA or Cdc. This suggests that it guides this RhoGEF to gain affinity for other GTPases. Since RhoJ, a small GTPase of the Cdc42 subfamily, has been involved in tumor-induced angiogenesis and the metastatic dissemination of cancer cells, we hypothesized that it might be a target of oncogenic Gαq signaling via PDZ-RhoGEF. Consistent with this possibility, we found that Gαq Q209L drives full-length PDZ-RhoGEF and a DH-PH construct to interact with nucleotide-free RhoJ-G33A, a mutant with affinity for active RhoJ-GEFs. Gαq Q209L binding to PDZ-RhoGEF was mapped to the PH domain, which, as an isolated construct, attenuated the interaction of this mutant GTPase with PDZ-RhoGEF's catalytic module (DH-PH domains). Expression of these catalytic domains caused contraction of endothelial cells and generated fine cell sprouts that were inhibited by co-expression of dominant negative RhoJ. Using relational data mining of uveal melanoma patient TCGA datasets, we got an insight into the signaling landscape that accompanies the Gαq/PDZ-RhoGEF/RhoJ axis. We identified three transcriptional signatures statistically linked with shorter patient survival, including GPCRs and signaling effectors that are recognized as vulnerabilities in cancer cell synthetic lethality datasets. In conclusion, we demonstrated that an oncogenic Gαq mutant enables the PDZ-RhoGEF DH-PH module to recognize RhoJ, suggesting an allosteric mechanism by which this constitutively active GTPase stimulates RhoJ via PDZ-RhoGEF. These findings highlight PDZ-RhoGEF and RhoJ as potential targets in tumors driven by mutant Gαq.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Endothelial Cells/metabolism , GTP-Binding Proteins/metabolism , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism
4.
Molecules ; 28(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37894532

ABSTRACT

Among all cancers, lung cancer is the one with the highest mortality rate, and it also has limited therapeutics. Antitumor agents based on medicinal plants have gained importance as a source of bioactive substances. Tagetes erecta is a plant of great cultural value, and recent reports have suggested its cytotoxic effects in tumor cells. Our objective was to evaluate the antitumor activity of Tagetes erecta extract in a lung carcinoma model. Hydroalcoholic extracts were obtained from fresh flowers and leaves of T. erecta; both extracts did not exert toxicity on Artemia salina. We observed cytotoxic effects induced by the floral extract in Lewis lung carcinoma (LLC) and breast tumor cell line (MCF7), but not by the leaf extract. In vivo, a xenograft lung carcinoma model was performed with LLC cells implanted on C57BL/6 mice, which showed that the floral extract reduced tumor growth and improved the effect of etoposide. Microscopic analysis of tumors showed a reduction in mitoses and an increase in necrotic areas with the extract and the etoposide. The main phytochemical compounds found are 2,3-dihydro-benzofuran, octadecanoic acid, benzenacetic acid, oleic acid, linoleic acid, and acetic acid. We conclude that the hydroalcoholic extract of T. erecta flowers has cytotoxic effects in lung carcinoma cells and enhances the effect of etoposide.


Subject(s)
Antineoplastic Agents , Carcinoma , Lung Neoplasms , Tagetes , Humans , Animals , Mice , Tagetes/chemistry , Lung Neoplasms/drug therapy , Plant Extracts/pharmacology , Plant Extracts/chemistry , Etoposide , Mice, Inbred C57BL , Antineoplastic Agents/pharmacology , Lung
5.
Cancer Inform ; 22: 11769351231177267, 2023.
Article in English | MEDLINE | ID: mdl-37667731

ABSTRACT

The present study was the first comprehensive investigation of genetic mutation and expression levels of the p53 signaling genes in cutaneous melanoma through various genetic databases providing large datasets. The mutational landscape of p53 and its signaling genes was higher than expected, with TP53 followed by CDKN2A being the most mutated gene in cutaneous melanoma. Furthermore, the expression analysis showed that TP53, MDM2, CDKN2A, and TP53BP1 were overexpressed, while MDM4 and CDKN2B were under-expressed in cutaneous melanoma. Overall, TCGA data revealed that among all the other p53 signaling proteins, CDKN2A was significantly higher in both sun and non-sun-exposed healthy tissues than in melanoma. Likewise, MDM4 and TP53BP1 expressions were markedly greater in non-sun-exposed healthy tissues compared to other groups. However, CDKN2B expression was higher in the sun-exposed healthy tissues than in other tissues. In addition, various genes were expressed significantly differently among males and females. In addition, CDKN2A was highly expressed in the SK-MEL-30 skin cancer cell line, whereas, Immune cell type expression analysis revealed that the MDM4 was highly expressed in naïve B-cells. Furthermore, all six genes were significantly overexpressed in extraordinarily overweight or obese tumor tissues compared to healthy tissues. MDM2 expression and tumor stage were closely related. There were differences in gene expression across patient age groups and positive nodal status. TP53 showed a positive correlation with B cells, MDM2 with CD8+T cells, macrophages and neutrophils, and MDM4 with neutrophils. CDKN2A/B had a non-significant correlation with all six types of immune cells. However, TP53BP1 was positively correlated with all five types of immune cells except B cells. Only TP53, MDM2, and CDKN2A had a role in cutaneous melanoma-specific tumor immunity. All TP53 and its regulating genes may be predictive for prognosis. The results of the present study need to be validated through future screening, in vivo, and in vitro studies.

6.
Cell Signal ; 109: 110749, 2023 09.
Article in English | MEDLINE | ID: mdl-37290677

ABSTRACT

Metastatic cancer cells dynamically adjust their shape to adhere, invade, migrate, and expand to generate secondary tumors. Inherent to these processes is the constant assembly and disassembly of cytoskeletal supramolecular structures. The subcellular places where cytoskeletal polymers are built and reorganized are defined by the activation of Rho GTPases. These molecular switches directly respond to signaling cascades integrated by Rho guanine nucleotide exchange factors (RhoGEFs), which are sophisticated multidomain proteins that control morphological behavior of cancer and stromal cells in response to cell-cell interactions, tumor-secreted factors and actions of oncogenic proteins within the tumor microenvironment. Stromal cells, including fibroblasts, immune and endothelial cells, and even projections of neuronal cells, adjust their shapes and move into growing tumoral masses, building tumor-induced structures that eventually serve as metastatic routes. Here we review the role of RhoGEFs in metastatic cancer. They are highly diverse proteins with common catalytic modules that select among a variety of homologous Rho GTPases enabling them to load GTP, acquiring an active conformation that stimulates effectors controlling actin cytoskeleton remodeling. Therefore, due to their strategic position in oncogenic signaling cascades, and their structural diversity flanking common catalytic modules, RhoGEFs possess unique characteristics that make them conceptual targets of antimetastatic precision therapies. Preclinical proof of concept, demonstrating the antimetastatic effect of inhibiting either expression or activity of ßPix (ARHGEF7), P-Rex1, Vav1, ARHGEF17, and Dock1, among others, is emerging.


Subject(s)
Neoplasms , rho GTP-Binding Proteins , Humans , rho GTP-Binding Proteins/metabolism , Endothelial Cells/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction/physiology , Neoplasms/metabolism , Tumor Microenvironment
7.
Life Sci ; 301: 120596, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35500681

ABSTRACT

GPR55 is a class A orphan G protein-coupled receptor that has drawn important therapeutic attention in the last decade because of its role in pathophysiological processes including vascular functions, metabolic dysfunction, neurodegenerative disorders, or bone turnover among others. Several cannabinoids of phytogenic, endogenous, and synthetic nature have shown to modulate this receptor leading to propose it as a member of the endocannabinoid system. The putative endogenous GPR55 ligand is L-α-lysophosphatidylinositol (LPI) and it has been associated with several processes that control cell survival and tumor progression. The relevance of GPR55 in cancer is currently being extensively studied in vitro and in vivo using diverse cancer models. The LPI/GPR55 axis has been reported to participate in pro-oncogenic processes including cellular proliferation, differentiation, migration, invasion, and metastasis being altered in several cancer cells via G12/13 and Gq signaling. Moreover, GRP55 and its bioactive lipid have been proposed as potential biomarkers for cancer diagnosis. Indeed, GPR55 overexpression or high expression has been shown to correlate with cancer aggressiveness in specific tumors including acute myeloid leukemia, uveal melanoma, low grade glioma and renal cancer. This review aims to analyze and summarize current evidence on the cancerogenic role of the LPI/GPR55 axis providing a critical view of the therapeutic prospects of this promising target.


Subject(s)
Lysophospholipids , Neoplasms , Carcinogenesis , Cell Proliferation , Humans , Lysophospholipids/metabolism , Receptors, Cannabinoid , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
8.
J Biol Chem ; 298(1): 101440, 2022 01.
Article in English | MEDLINE | ID: mdl-34808208

ABSTRACT

Metastatic lung cancer is a major cause of death worldwide. Dissemination of cancer cells can be facilitated by various agonists within the tumor microenvironment, including by lysophosphatidic acid (LPA). We postulate that Rho guanine nucleotide exchange factors (RhoGEFs), which integrate signaling cues driving cell migration, are critical effectors in metastatic cancer. Specifically, we addressed the hypothetical role of ARHGEF17, a RhoGEF, as a potential effector of Gßγ in metastatic lung cancer cells responding to LPA. Here, we show that ARHGEF17, originally identified as a tumor endothelial marker, is involved in tumor growth and metastatic dissemination of lung cancer cells in an immunocompetent murine model. Gene expression-based analysis of lung cancer datasets showed that increased levels of ARHGEF17 correlated with reduced survival of patients with advanced-stage tumors. Cellular assays also revealed that this RhoGEF participates in the invasive and migratory responses elicited by Gi protein-coupled LPA receptors via the Gßγ subunit complex. We demonstrate that this signaling heterodimer promoted ARHGEF17 recruitment to the cell periphery and actin fibers. Moreover, Gßγ allosterically activates ARHGEF17 by the removal of inhibitory intramolecular restrictions. Taken together, our results indicate that ARHGEF17 may be a valid potential target in the treatment of metastatic lung cancer.


Subject(s)
GTP-Binding Protein beta Subunits , GTP-Binding Protein gamma Subunits , Lung Neoplasms , Rho Guanine Nucleotide Exchange Factors , Signal Transduction , Animals , Cell Movement , Disease Progression , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Neoplasm Metastasis , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/metabolism , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction/physiology , Tumor Microenvironment
9.
Biochem Biophys Res Commun ; 539: 20-27, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33412417

ABSTRACT

Gßγ marks the inner side of the plasma membrane where chemotactic GPCRs activate Rac to lead the assembly of actin filaments that push the cell to move forward. Upon dissociation from heterotrimeric Gi, Gßγ recruits and activates P-Rex1, a Rac guanine nucleotide exchange factor (RacGEF). This cytosolic chemotactic effector is kept inactive by intramolecular interactions. The mechanism by which Gßγ stimulates P-Rex1 has been debated. We hypothesized that Gßγ activates P-Rex1 by a two-step mechanism based on independent interaction interfaces to recruit and unroll this RacGEF. Using pulldown assays, we found that Gßγ binds P-Rex1-DH/PH as well as PDZ-PDZ domains. These domains and the DEP-DEP tandem interact among them and dissociate upon binding with Gßγ, arguing for a stimulatory allosteric effect. In addition, P-Rex1 catalytic activity is inhibited by its C-terminal domain. To discern P-Rex1 recruitment from activation, we studied Q-Rhox, a synthetic RhoGEF having the PDZ-RhoGEF catalytic DH/PH module, insensitive to Gßγ, swapped into P-Rex1. Gßγ recruited Q-Rhox to the plasma membrane, indicating that Gßγ/PDZ-PDZ interaction interface plays a role on P-Rex1 recruitment. In conclusion, we reconcile previous findings and propose a mechanistic model of P-Rex1 activation; accordingly, Gßγ recruits P-Rex1 via the Gßγ/PDZ-PDZ interface followed by a second contact involving the Gßγ/DH/PH interface to unleash P-Rex1 RacGEF activity at the plasma membrane.


Subject(s)
Cell Membrane/metabolism , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Receptors, G-Protein-Coupled/metabolism , rac GTP-Binding Proteins/metabolism , Actin Cytoskeleton/metabolism , HEK293 Cells , Humans , PDZ Domains , Protein Binding , Signal Transduction
10.
J Biol Chem ; 295(50): 16920-16928, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33023908

ABSTRACT

Gα proteins promote dynamic adjustments of cell shape directed by actin-cytoskeleton reorganization via their respective RhoGEF effectors. For example, Gα13 binding to the RGS-homology (RH) domains of several RH-RhoGEFs allosterically activates these proteins, causing them to expose their catalytic Dbl-homology (DH)/pleckstrin-homology (PH) regions, which triggers downstream signals. However, whether additional Gα proteins might directly regulate the RH-RhoGEFs was not known. To explore this question, we first examined the morphological effects of expressing shortened RH-RhoGEF DH/PH constructs of p115RhoGEF/ARHGEF1, PDZ-RhoGEF (PRG)/ARHGEF11, and LARG/ARHGEF12. As expected, the three constructs promoted cell contraction and activated RhoA, known to be downstream of Gα13 Intriguingly, PRG DH/PH also induced filopodia-like cell protrusions and activated Cdc42. This pathway was stimulated by constitutively active Gαs (GαsQ227L), which enabled endogenous PRG to gain affinity for Cdc42. A chemogenetic approach revealed that signaling by Gs-coupled receptors, but not by those coupled to Gi or Gq, enabled PRG to bind Cdc42. This receptor-dependent effect, as well as CREB phosphorylation, was blocked by a construct derived from the PRG:Gαs-binding region, PRG-linker. Active Gαs interacted with isolated PRG DH and PH domains and their linker. In addition, this construct interfered with GαsQ227L's ability to guide PRG's interaction with Cdc42. Endogenous Gs-coupled prostaglandin receptors stimulated PRG binding to membrane fractions and activated signaling to PKA, and this canonical endogenous pathway was attenuated by PRG-linker. Altogether, our results demonstrate that active Gαs can recognize PRG as a novel effector directing its DH/PH catalytic module to gain affinity for Cdc42.


Subject(s)
Cell Movement , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Pleckstrin Homology Domains/genetics , Pseudopodia/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction , cdc42 GTP-Binding Protein/metabolism , Animals , Cell Line , Humans , Mice , Phosphorylation
11.
Signal Transduct Target Ther ; 5(1): 99, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32555170

ABSTRACT

Normal cells are hijacked by cancer cells forming together heterogeneous tumor masses immersed in aberrant communication circuits that facilitate tumor growth and dissemination. Besides the well characterized angiogenic effect of some tumor-derived factors; others, such as BDNF, recruit peripheral nerves and leukocytes. The neurogenic switch, activated by tumor-derived neurotrophins and extracellular vesicles, attracts adjacent peripheral fibers (autonomic/sensorial) and neural progenitor cells. Strikingly, tumor-associated nerve fibers can guide cancer cell dissemination. Moreover, IL-1ß, CCL2, PGE2, among other chemotactic factors, attract natural immunosuppressive cells, including T regulatory (Tregs), myeloid-derived suppressor cells (MDSCs), and M2 macrophages, to the tumor microenvironment. These leukocytes further exacerbate the aberrant communication circuit releasing factors with neurogenic effect. Furthermore, cancer cells directly evade immune surveillance and the antitumoral actions of natural killer cells by activating immunosuppressive mechanisms elicited by heterophilic complexes, joining cancer and immune cells, formed by PD-L1/PD1 and CD80/CTLA-4 plasma membrane proteins. Altogether, nervous and immune cells, together with fibroblasts, endothelial, and bone-marrow-derived cells, promote tumor growth and enhance the metastatic properties of cancer cells. Inspired by the demonstrated, but restricted, power of anti-angiogenic and immune cell-based therapies, preclinical studies are focusing on strategies aimed to inhibit tumor-induced neurogenesis. Here we discuss the potential of anti-neurogenesis and, considering the interplay between nervous and immune systems, we also focus on anti-immunosuppression-based therapies. Small molecules, antibodies and immune cells are being considered as therapeutic agents, aimed to prevent cancer cell communication with neurons and leukocytes, targeting chemotactic and neurotransmitter signaling pathways linked to perineural invasion and metastasis.


Subject(s)
Molecular Targeted Therapy , Neoplasms/genetics , Neurogenesis/genetics , Tumor Escape/genetics , Cell Communication/genetics , Humans , Killer Cells, Natural/immunology , Neoplasms/complications , Neoplasms/therapy , Tumor Escape/immunology
12.
Biochem Biophys Res Commun ; 524(1): 109-116, 2020 03 26.
Article in English | MEDLINE | ID: mdl-31980169

ABSTRACT

Endothelial cell sprouting is a critical event in tumor-induced angiogenesis. In melanoma and lung cancer murine models, targeting RhoJ prevents endothelial sprouting, tumor growth and metastasis and enhances the effects of conventional anti-neoplastic therapy. Aiming to understand how RhoJ is activated, we used a gain of function approach to identify constitutively active Rho guanine nucleotide exchange factors (RhoGEFs) able to promote RhoJ-dependent actin-driven membrane protrusions. We demonstrate that a membrane-anchored Intersectin 1 (ITSN1) DH-PH construct promotes endothelial cell sprouting via RhoJ. Mechanistically, this is controlled by direct interaction between the catalytic ITSN1 DH-PH module and RhoJ, it is sensitive to phosphorylation by focal adhesion kinase (FAK) and to endosomal trapping of the ITSN1 construct by dominant negative RhoJ. This ITSN1/RhoJ signaling axis is independent of Cdc42, a previously characterized ITSN1 target and a RhoJ close homologue. In conclusion, our results elucidate an ITSN1/RhoJ molecular link able to promote endothelial cell sprouting and set the basis to explore this signaling pathway in the context of tumor-induced angiogenesis.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Antineoplastic Agents/chemistry , Rho Guanine Nucleotide Exchange Factors/metabolism , rho GTP-Binding Proteins/metabolism , Actin Cytoskeleton/metabolism , Actins/chemistry , Animals , Cell Membrane/metabolism , Cell Surface Extensions/drug effects , Endocytosis , Endothelial Cells/cytology , Endothelial Cells/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesions , HEK293 Cells , Humans , Mice , Phosphorylation , Signal Transduction , Swine , rho GTP-Binding Proteins/chemistry
13.
Sci Signal ; 12(573)2019 03 19.
Article in English | MEDLINE | ID: mdl-30890659

ABSTRACT

Somatic gain-of-function mutations of GNAQ and GNA11, which encode α subunits of heterotrimeric Gαq/11 proteins, occur in about 85% of cases of uveal melanoma (UM), the most common cancer of the adult eye. Molecular therapies to directly target these oncoproteins are lacking, and current treatment options rely on radiation, surgery, or inhibition of effector molecules downstream of these G proteins. A hallmark feature of oncogenic Gαq/11 proteins is their reduced intrinsic rate of hydrolysis of guanosine triphosphate (GTP), which results in their accumulation in the GTP-bound, active state. Here, we report that the cyclic depsipeptide FR900359 (FR) directly interacted with GTPase-deficient Gαq/11 proteins and preferentially inhibited mitogenic ERK signaling rather than canonical phospholipase Cß (PLCß) signaling driven by these oncogenes. Thereby, FR suppressed the proliferation of melanoma cells in culture and inhibited the growth of Gαq-driven UM mouse xenografts in vivo. In contrast, FR did not affect tumor growth when xenografts carried mutated B-RafV600E as the oncogenic driver. Because FR enabled suppression of malignant traits in cancer cells that are driven by activating mutations at codon 209 in Gαq/11 proteins, we envision that similar approaches could be taken to blunt the signaling of non-Gαq/11 G proteins.


Subject(s)
Depsipeptides/pharmacology , Drug Delivery Systems , GTP-Binding Protein alpha Subunits, Gq-G11 , GTP-Binding Protein alpha Subunits , Gain of Function Mutation , Melanoma , Neoplasm Proteins , Uveal Neoplasms , Animals , Cell Line, Tumor , Depsipeptides/chemistry , GTP-Binding Protein alpha Subunits/antagonists & inhibitors , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/antagonists & inhibitors , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , HEK293 Cells , Humans , Melanoma/drug therapy , Melanoma/enzymology , Melanoma/genetics , Melanoma/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Uveal Neoplasms/drug therapy , Uveal Neoplasms/enzymology , Uveal Neoplasms/genetics , Uveal Neoplasms/pathology , Xenograft Model Antitumor Assays
14.
J Cell Commun Signal ; 13(2): 179-191, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30612298

ABSTRACT

Reciprocal communication among cells of the tumor microenvironment contributes to cancer progression. Here, we show that a protumoral population of cultured bone marrow-derived cells (BMDC) containing Tie2+/CD45+/CD11b + cells responded to lung carcinoma cells and reciprocally stimulated them. These cells migrated via heterotrimeric G protein-dependent signaling pathways and strongly activated the PI3K/AKT, ERK and mTOR signaling cascades in response to conditioned media and chemotactic agonists. To get insight into the molecular machinery involved in BMDC migration, we revealed their repertoire of guanine nucleotide exchange factors for Rho GTPases (RhoGEFs) and G proteins in comparison with fresh bone marrow cells, proven that these cell populations had contrasting effects on tumor growth. BMDC exhibited a higher expression of G protein regulated RhoGEFs including P-Rex1, PDZ-RhoGEF, LARG, Trio and some less well characterized RhoGEFs such as ARHGEF5, ARHGEF17 and PLEKHG6. G proteins such as Gα12/13, Gαq, and the small GTPase RhoJ were also highly expressed in BMDC. Our results indicate that Tie2+/CD45+/CD11b + BMDC express a unique variety of chemotactic transducers and effectors potentially linked to their protumoral effect, warranting further studies to their characterization as molecular targets.

15.
J Biol Chem ; 294(2): 531-546, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30446620

ABSTRACT

G protein-coupled receptors stimulate Rho guanine nucleotide exchange factors that promote mammalian cell migration. Rac and Rho GTPases exert opposing effects on cell morphology and are stimulated downstream of Gßγ and Gα12/13 or Gαq, respectively. These Gα subunits might in turn favor Rho pathways by preventing Gßγ signaling to Rac. Here, we investigated whether Gßγ signaling to phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchange factor 1 (P-REX1), a key Gßγ chemotactic effector, is directly controlled by Rho-activating Gα subunits. We show that pharmacological inhibition of Gαq makes P-REX1 activation by Gq/Gi-coupled lysophosphatidic acid receptors more effective. Moreover, chemogenetic control of Gi and Gq by designer receptors exclusively activated by designer drugs (DREADDs) confirmed that Gi differentially activates P-REX1. GTPase-deficient GαqQL and Gα13QL variants formed stable complexes with Gßγ, impairing its interaction with P-REX1. The N-terminal regions of these variants were essential for stable interaction with Gßγ. Pulldown assays revealed that chimeric Gα13-i2QL interacts with Gßγ unlike to Gαi2-13QL, the reciprocal chimera, which similarly to Gαi2QL could not interact with Gßγ. Moreover, Gßγ was part of tetrameric Gßγ-GαqQL-RGS2 and Gßγ-Gα13-i2QL-RGS4 complexes, whereas Gα13QL dissociated from Gßγ to interact with the PDZ-RhoGEF-RGS domain. Consistent with an integrated response, Gßγ and AKT kinase were associated with active SDF-1/CXCL12-stimulated P-REX1. This pathway was inhibited by GαqQL and Gα13QL, which also prevented CXCR4-dependent cell migration. We conclude that a coordinated mechanism prioritizes Gαq- and Gα13-mediated signaling to Rho over a Gßγ-dependent Rac pathway, attributed to heterotrimeric Gi proteins.


Subject(s)
Cell Movement , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction , Animals , COS Cells , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , MCF-7 Cells
16.
J Biol Chem ; 294(7): 2232-2246, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30530493

ABSTRACT

Regulatory subunits of protein kinase A (PKA) inhibit its kinase subunits. Intriguingly, their potential as cAMP-dependent signal transducers remains uncharacterized. We recently reported that type I PKA regulatory subunits (RIα) interact with phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchange factor 1 (P-REX1), a chemotactic Rac guanine exchange factor (RacGEF). Because P-REX1 is known to be phosphorylated and inhibited by PKA, its interaction with RIα suggests that PKA regulatory and catalytic subunits may fine-tune P-REX1 activity or those of its target pools. Here, we tested whether RIα acts as a cAMP-dependent factor promoting P-REX1-mediated Rac activation and cell migration. We observed that Gs-coupled EP2 receptors indeed promote endothelial cell migration via RIα-activated P-REX1. Expression of the P-REX1-PDZ1 domain prevented RIα/P-REX1 interaction, P-REX1 activation, and EP2-dependent cell migration, and P-REX1 silencing abrogated RIα-dependent Rac activation. RIα-specific cAMP analogs activated P-REX1, but lost this activity in RIα-knockdown cells, and cAMP pulldown assays revealed that P-REX1 preferentially interacts with free RIα. Moreover, purified RIα directly activated P-REX1 in vitro We also found that the RIα CNB-B domain is critical for the interaction with P-REX1, which was increased in RIα mutants, such as the acrodysostosis-associated mutant, that activate P-REX1 at basal cAMP levels. RIα and Cα PKA subunits targeted distinct P-REX1 molecules, indicated by an absence of phosphorylation in the active fraction of P-REX1. This was in contrast to the inactive fraction in which phosphorylated P-REX1 was present, suggesting co-existence of dual stimulatory and inhibitory effects. We conclude that PKA's regulatory subunits are cAMP-dependent signal transducers.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Cyclic AMP/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Second Messenger Systems , AMP-Activated Protein Kinases/genetics , Animals , COS Cells , Chlorocebus aethiops , Cyclic AMP/genetics , Gene Knockdown Techniques , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , Humans , MCF-7 Cells , PDZ Domains , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Prostaglandin E, EP2 Subtype/genetics , Receptors, Prostaglandin E, EP2 Subtype/metabolism
17.
Int Immunopharmacol ; 64: 298-307, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30243065

ABSTRACT

Activation of high affinity receptor for IgE (FcεRI) by IgE/antigen complexes in mast cells (MCs) leads to the release of preformed pro-inflammatory mediators stored in granules by a Ca2+-dependent process known as anaphylactic degranulation. Degranulation inhibition has been proposed as a strategy to control allergies and chronic inflammation conditions. Cannabinoids are important inhibitors of inflammatory reactions but their effects on IgE/Ag-mediated MCs responses are not well described. In this study, we analyzed the effect of the endocannabinoid anandamide (AEA), the selective CB2 receptor agonist HU308, and the GPR55 receptor agonist lysophosphatidylinositol (LPI) on FcεRI-induced activation in murine bone marrow-derived mast cells (BMMCs). Our results show that AEA, HU380 and LPI inhibited FcεRI-induced degranulation in a concentration-dependent manner. This effect was mediated by CB2 and GPR55 receptor activation through a mechanism insensitive to pertussis toxin. Degranulation inhibition was prevented by CB2 and GPR55 antagonism, but not by CB1 receptor blockage. AEA also inhibited calcium-dependent cytokine mRNA synthesis induced by FcεRI crosslinking, without affecting early phosphorylation events. In addition, AEA, HU308 and LPI inhibited intracellular Ca2+ rise in response to IgE/Ag. CB2 and GPR55 receptor antagonism could not prevent the inhibition produced by AEA and HU308, but partially blocked the one caused by LPI. These results indicate that AEA inhibits IgE/Ag-induced degranulation through a mechanism that includes the participation of CB2 and GPR55 receptors acting in close crosstalk, and show that CB2-GPR55 heteromers are important negative regulators of FcεRI-induced responses in MCs.


Subject(s)
Arachidonic Acids/pharmacology , Cell Degranulation/drug effects , Cytokines/biosynthesis , Endocannabinoids/pharmacology , Mast Cells/drug effects , Polyunsaturated Alkamides/pharmacology , Receptor, Cannabinoid, CB2/physiology , Receptors, Cannabinoid/physiology , Receptors, IgE/antagonists & inhibitors , Animals , Mice , Mice, Inbred C57BL , Pertussis Toxin/pharmacology , Receptor, Cannabinoid, CB2/chemistry , Receptors, Cannabinoid/chemistry , Receptors, IgE/physiology
18.
BMC Cancer ; 17(1): 531, 2017 Aug 08.
Article in English | MEDLINE | ID: mdl-28789619

ABSTRACT

BACKGROUND: Human papillomavirus (HPV) is associated with the genesis of cervical carcinoma. The co-infection among HPV genotypes is frequent, but the clinical significance is controversial; in Mexico, the prevalence and pattern of co-infection differ depending on the geographic area of study. We analyzed the mono- and co-infection prevalence of multiple HPV genotypes, as well as preferential interactions among them in a Mexico City sample population. METHODS: This study was designed as a retrospective cohort study. Cervical cytology samples from 1163 women and 166 urethral scraping samples of men were analyzed between 2010 and 2012. The detection of HPV infection was performed using the hybrid capture and the genotyping was by PCR (HPV 6, 11, 16, 18, 30, 31, 33, 35, 45, 51, and 52). RESULTS: 36% of women were HPV-positive and the most prevalent genotypes were HPV 51, 52, 16, and 33 (42, 38, 37, and 34%, respectively). The prevalence of co-infection was higher (75.37%) than mono-infection in women HPV positives. All genotypes were co-infected with HPV 16, but the co-infection with 51-52 genotypes was the most frequent combination in all cases. CONCLUSION: The co-infection was very common; each HPV genotype showed different preferences for co-infection with other genotypes, HPV 51-52 co-infection was the most frequent. The HPV 16, 33, 51 and 52 were the most prevalent and are a public health concern to the Mexican population.


Subject(s)
Coinfection , Genotype , Papillomaviridae/classification , Papillomaviridae/genetics , Papillomavirus Infections/epidemiology , Papillomavirus Infections/virology , Adult , Aged , Female , Humans , Male , Mexico/epidemiology , Middle Aged , Prevalence , Public Health Surveillance , Young Adult
19.
Mol Pharmacol ; 90(5): 573-586, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27638873

ABSTRACT

Cancer cells and stroma cells in tumors secrete chemotactic agonists that exacerbate invasive behavior, promote tumor-induced angiogenesis, and recruit protumoral bone marrow-derived cells. In response to shallow gradients of chemotactic stimuli recognized by G protein-coupled receptors (GPCRs), Gßγ-dependent signaling cascades contribute to specifying the spatiotemporal assembly of cytoskeletal structures that can dynamically alter cell morphology. This sophisticated process is intrinsically linked to the activation of Rho GTPases and their cytoskeletal-remodeling effectors. Thus, Rho guanine nucleotide exchange factors, the activators of these molecular switches, and their upstream signaling partners are considered participants of tumor progression. Specifically, phosphoinositide-3 kinases (class I PI3Ks, ß and γ) and P-Rex1, a Rac-specific guanine nucleotide exchange factor, are fundamental Gßγ effectors in the pathways controlling directionally persistent motility. In addition, GPCR-dependent chemotactic responses often involve endosomal trafficking of signaling proteins; coincidently, endosomes serve as signaling platforms for Gßγ In preclinical murine models of cancer, inhibition of Gßγ attenuates tumor growth, whereas in cancer patients, aberrant overexpression of chemotactic Gßγ effectors and recently identified mutations in Gß correlate with poor clinical outcome. Here we discuss emerging paradigms of Gßγ signaling in cancer, which are essential for chemotactic cell migration and represent novel opportunities to develop pathway-specific pharmacologic treatments.


Subject(s)
Cell Movement , Cell Polarity , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Tumor Microenvironment , Animals , Humans
20.
J Biol Chem ; 291(12): 6182-99, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26797121

ABSTRACT

Morphology of migrating cells is regulated by Rho GTPases and fine-tuned by protein interactions and phosphorylation. PKA affects cell migration potentially through spatiotemporal interactions with regulators of Rho GTPases. Here we show that the endogenous regulatory (R) subunit of type I PKA interacts with P-Rex1, a Rac guanine nucleotide exchange factor that integrates chemotactic signals. Type I PKA holoenzyme interacts with P-Rex1 PDZ domains via the CNB B domain of RIα, which when expressed by itself facilitates endothelial cell migration. P-Rex1 activation localizes PKA to the cell periphery, whereas stimulation of PKA phosphorylates P-Rex1 and prevents its activation in cells responding to SDF-1 (stromal cell-derived factor 1). The P-Rex1 DEP1 domain is phosphorylated at Ser-436, which inhibits the DH-PH catalytic cassette by direct interaction. In addition, the P-Rex1 C terminus is indirectly targeted by PKA, promoting inhibitory interactions independently of the DEP1-PDZ2 region. A P-Rex1 S436A mutant construct shows increased RacGEF activity and prevents the inhibitory effect of forskolin on sphingosine 1-phosphate-dependent endothelial cell migration. Altogether, these results support the idea that P-Rex1 contributes to the spatiotemporal localization of type I PKA, which tightly regulates this guanine exchange factor by a multistep mechanism, initiated by interaction with the PDZ domains of P-Rex1 followed by direct phosphorylation at the first DEP domain and putatively indirect regulation of the C terminus, thus promoting inhibitory intramolecular interactions. This reciprocal regulation between PKA and P-Rex1 might represent a key node of integration by which chemotactic signaling is fine-tuned by PKA.


Subject(s)
Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Cell Membrane/enzymology , Cell Movement , Chemokine CXCL12/physiology , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/chemistry , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/metabolism , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/chemistry , Endothelial Cells/physiology , Guanine Nucleotide Exchange Factors/chemistry , HEK293 Cells , Humans , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Protein Transport , Signal Transduction , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...