Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Neurochem ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783749

ABSTRACT

The dorsal striatum is composed of the caudate nucleus and the putamen in human and non-human primates. These two regions receive different cortical projections and are functionally distinct. The caudate is involved in the control of goal-directed behaviors, while the putamen is implicated in habit learning and formation. Previous reports indicate that ethanol differentially influences neurotransmission in these two regions. Because neurotransmitters primarily signal through G protein-coupled receptors (GPCRs) to modulate neuronal activity, the present study aimed to determine whether ethanol had a region-dependent impact on the expression of proteins that are involved in the trafficking and function of GPCRs, including G protein subunits and their effectors, protein kinases, and elements of the cytoskeleton. Western blotting was performed to examine protein levels in the caudate and the putamen of male cynomolgus macaques that self-administered ethanol for 1 year under free access conditions, along with control animals that self-administered an isocaloric sweetened solution under identical operant conditions. Among the 18 proteins studied, we found that the levels of one protein (PKCß) were increased, and 13 proteins (Gαi1/3, Gαi2, Gαo, Gß1γ, PKCα, PKCε, CaMKII, GSK3ß, ß-actin, cofilin, α-tubulin, and tubulin polymerization promoting protein) were reduced in the caudate of alcohol-drinking macaques. However, ethanol did not alter the expression of any proteins examined in the putamen. These observations underscore the unique vulnerability of the caudate nucleus to changes in protein expression induced by chronic ethanol exposure. Whether these alterations are associated with ethanol-induced dysregulation of GPCR function and neurotransmission warrants future investigation.

2.
Adv Drug Alcohol Res ; 4: 12528, 2024.
Article in English | MEDLINE | ID: mdl-38737578

ABSTRACT

Male rhesus monkeys (n = 24) had a biopsy of prefrontal cortical area 46 prior to chronic ethanol self-administration (n = 17) or caloric control (n = 7). Fourteen months of daily self-administration (water vs. 4% alcohol, 22 h access/day termed "open-access") was followed by two cycles of prolonged abstinence (5 weeks) each followed by 3 months of open-access alcohol and a final abstinence followed by necropsy. At necropsy, a biopsy of Area 46, contralateral to the original biopsy, was obtained. Gene expression data (RNA-Seq) were collected comparing biopsy/necropsy samples. Monkeys were categorized by drinking status during the final post-abstinent drinking phase as light (LD), binge (BD), heavy (HD) and very heavy (VHD drinkers). Comparing pre-ethanol to post-abstinent biopsies, four animals that converted from HD to VHD status had significant ontology enrichments in downregulated genes (necropsy minus biopsy n = 286) that included immune response (FDR < 9 × 10-7) and plasma membrane changes (FDR < 1 × 10-7). Genes in the immune response category included IL16 and 18, CCR1, B2M, TLR3, 6 and 7, SP2 and CX3CR1. Upregulated genes (N = 388) were particularly enriched in genes associated with the negative regulation of MAP kinase activity (FDR < 3 × 10-5), including DUSP 1, 4, 5, 6 and 18, SPRY 2, 3, and 4, SPRED2, BMP4 and RGS2. Overall, these data illustrate the power of the NHP model and the within-subject design of genomic changes due to alcohol and suggest new targets for treating severe escalated drinking following repeated alcohol abstinence attempts.

3.
Front Aging Neurosci ; 16: 1328543, 2024.
Article in English | MEDLINE | ID: mdl-38560025

ABSTRACT

Introduction: The hippocampus is especially susceptible to age-associated neuronal pathologies, and there is concern that the age-associated rise in cortisol secretion from the adrenal gland may contribute to their etiology. Furthermore, because 11ß-hydroxysteroid dehydrogenase type 1 (HSD11B1) catalyzes the reduction of cortisone to the active hormone cortisol, it is plausible that an increase in the expression of this enzyme enhances the deleterious impact of cortisol in the hippocampus and contributes to the neuronal pathologies that underlie cognitive decline in the elderly. Methods: Rhesus macaques were used as a translational animal model of human aging, to examine age-related changes in gene and protein expressions of (HSD11B1/HSD11B1) in the hippocampus, a region of the brain that plays a crucial role in learning and memory. Results: Older animals showed significantly (p < 0.01) higher base-line cortisol levels in the circulation. In addition, they showed significantly (p < 0.05) higher hippocampal expression of HSD11B1 but not NR3C1 and NR3C2 (i.e., two receptor-encoding genes through which cortisol exerts its physiological actions). A similar age-related significant (p < 0.05) increase in the expression of the HSD11B1 was revealed at the protein level by western blot analysis. Discussion: The data suggest that an age-related increase in the expression of hippocampal HSD11B1 is likely to raise cortisol concentrations in this cognitive brain area, and thereby contribute to the etiology of neuropathologies that ultimately lead to neuronal loss and dementia. Targeting this enzyme pharmacologically may help to reduce the negative impact of elevated cortisol concentrations within glucocorticoid-sensitive brain areas and thereby afford neuronal protection.

4.
Geroscience ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509416

ABSTRACT

The postmenopausal decrease in circulating estradiol (E2) levels has been shown to contribute to several adverse physiological and psychiatric effects. To elucidate the molecular effects of E2 on the brain, we examined differential gene expression and DNA methylation (DNAm) patterns in the nonhuman primate brain following ovariectomy (Ov) and subsequent subcutaneous bioidentical E2 chronic treatment. We identified several dysregulated molecular networks, including MAPK signaling and dopaminergic synapse response, that are associated with ovariectomy and shared across two different brain areas, the occipital cortex (OC) and prefrontal cortex (PFC). The finding that hypomethylation (p = 1.6 × 10-51) and upregulation (p = 3.8 × 10-3) of UBE2M across both brain regions provide strong evidence for molecular differences in the brain induced by E2 depletion. Additionally, differential expression (p = 1.9 × 10-4; interaction p = 3.5 × 10-2) of LTBR in the PFC provides further support for the role E2 plays in the brain, by demonstrating that the regulation of some genes that are altered by ovariectomy may also be modulated by Ov followed by hormone replacement therapy (HRT). These results present real opportunities to understand the specific biological mechanisms that are altered with depleted E2. Given E2's potential role in cognitive decline and neuroinflammation, our findings could lead to the discovery of novel therapeutics to slow cognitive decline. Together, this work represents a major step toward understanding molecular changes in the brain that are caused by ovariectomy and how E2 treatment may revert or protect against the negative neuro-related consequences caused by a depletion in estrogen as women approach menopause.

5.
Clin Epigenetics ; 15(1): 191, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38093359

ABSTRACT

BACKGROUND: In 1990, David Barker proposed that prenatal nutrition is directly linked to adult cardiovascular disease. Since then, the relationship between adult cardiovascular risk, metabolic syndrome and birth weight has been widely documented. Here, we used the TruSeq Methyl Capture EPIC platform to compare the methylation patterns in cord blood from large for gestational age (LGA) vs adequate for gestational age (AGA) newborns from the LARGAN cohort. RESULTS: We found 1672 differentially methylated CpGs (DMCs) with a nominal p < 0.05 and 48 differentially methylated regions (DMRs) with a corrected p < 0.05 between the LGA and AGA groups. A systems biology approach identified several biological processes significantly enriched with genes in association with DMCs with FDR < 0.05, including regulation of transcription, regulation of epinephrine secretion, norepinephrine biosynthesis, receptor transactivation, forebrain regionalization and several terms related to kidney and cardiovascular development. Gene ontology analysis of the genes in association with the 48 DMRs identified several significantly enriched biological processes related to kidney development, including mesonephric duct development and nephron tubule development. Furthermore, our dataset identified several DNA methylation markers enriched in gene networks involved in biological pathways and rare diseases of the cardiovascular system, kidneys, and metabolism. CONCLUSIONS: Our study identified several DMCs/DMRs in association with fetal overgrowth. The use of cord blood as a material for the identification of DNA methylation biomarkers gives us the possibility to perform follow-up studies on the same patients as they grow. These studies will not only help us understand how the methylome responds to continuum postnatal growth but also link early alterations of the DNA methylome with later clinical markers of growth and metabolic fitness.


Subject(s)
DNA Methylation , Diabetes, Gestational , Pregnancy , Adult , Female , Humans , Infant, Newborn , Gestational Age , Diabetes, Gestational/genetics , Fetal Macrosomia/genetics
6.
Transl Psychiatry ; 13(1): 364, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012158

ABSTRACT

The underlying genetic and epigenetic mechanisms driving functional adaptations in neuronal excitability and excessive alcohol intake are poorly understood. Small-conductance Ca2+-activated K+ (KCa2 or SK) channels encoded by the KCNN family of genes have emerged from preclinical studies as a key contributor to alcohol-induced functional neuroadaptations in alcohol-drinking monkeys and alcohol-dependent mice. Here, this cross-species analysis focused on KCNN3 DNA methylation, gene expression, and single nucleotide polymorphisms, including alternative promoters in KCNN3, that could influence surface trafficking and function of KCa2 channels. Bisulfite sequencing analysis of the nucleus accumbens tissue from alcohol-drinking monkeys and alcohol-dependent mice revealed a differentially methylated region in exon 1A of KCNN3 that overlaps with a predicted promoter sequence. The hypermethylation of KCNN3 in the accumbens paralleled an increase in the expression of alternative transcripts that encode apamin-insensitive and dominant-negative KCa2 channel isoforms. A polymorphic repeat in macaque KCNN3 encoded by exon 1 did not correlate with alcohol drinking. At the protein level, KCa2.3 channel expression in the accumbens was significantly reduced in very heavy-drinking monkeys. Together, our cross-species findings on epigenetic dysregulation of KCNN3 represent a complex mechanism that utilizes alternative promoters to potentially impact the firing of accumbens neurons. Thus, these results provide support for hypermethylation of KCNN3 as a possible key molecular mechanism underlying harmful alcohol intake and alcohol use disorder.


Subject(s)
Alcoholism , Epigenesis, Genetic , Small-Conductance Calcium-Activated Potassium Channels , Animals , Mice , Alcohol Drinking/genetics , Alcoholism/genetics , Nucleus Accumbens , Haplorhini , Small-Conductance Calcium-Activated Potassium Channels/genetics
7.
Front Aging Neurosci ; 15: 1326747, 2023.
Article in English | MEDLINE | ID: mdl-38274989

ABSTRACT

Background: Amyloid beta (Aß) plaque density was examined in the amygdala of rhesus macaques, to elucidate the influence of age, diet and hormonal environment. Methods: Luminex technology was used to measure cerebrospinal fluid (CSF) concentrations of Aß40 and Aß42 across three decades, while immunohistochemistry was used to examine Aß plaque density in the amygdala. Results: Aß40 was found to be the predominant isoform of Aß in the CSF, but neither Aß40 or Aß42 concentrations showed an age-related change, and the ratio of Aß42 to Aß40 showed only a marginal increase. Significantly fewer Aß plaques were detected in the amygdala of old ovariectomized animals if they received estradiol HRT (p < 0.001); similar results were obtained regardless of whether they had been maintained on a regular monkey chow for ∼48 months or on a high-fat, high-sugar, Western-style diet for ∼30 months. Conclusion: The results demonstrate that HRT involving estrogen can reduce Aß plaque load in a cognitive brain region of aged non-human primates. The results from this translational animal model may therefore have clinical relevance to the treatment of AD in post-menopausal women, whether used alone, or as a supplement to current pharmacological and monoclonal antibody-based interventions.

8.
bioRxiv ; 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38187564

ABSTRACT

The postmenopausal decrease in circulating estradiol (E2) levels has been shown to contribute to several adverse physiological and psychiatric effects. To elucidate the molecular effects of E2 on the brain, we examined differential gene expression and DNA methylation (DNAm) patterns in the nonhuman primate brain following ovariectomy (Ov) and subsequent E2 treatment. We identified several dysregulated molecular networks, including MAPK signaling and dopaminergic synapse response, that are associated with ovariectomy and shared across two different brain areas, the occipital cortex (OC) and prefrontal cortex (PFC). The finding that hypomethylation (p=1.6×10-51) and upregulation (p=3.8×10-3) of UBE2M across both brain regions, provide strong evidence for molecular differences in the brain induced by E2 depletion. Additionally, differential expression (p=1.9×10-4; interaction p=3.5×10-2) of LTBR in the PFC, provides further support for the role E2 plays in the brain, by demonstrating that the regulation of some genes that are altered by ovariectomy may also be modulated by Ov followed by hormone replacement therapy (HRT). These results present real opportunities to understand the specific biological mechanisms that are altered with depleted E2. Given E2's potential role in cognitive decline and neuroinflammation, our findings could lead to the discovery of novel therapeutics to slow cognitive decline. Together, this work represents a major step towards understanding molecular changes in the brain that are caused by ovariectomy and how E2 treatment may revert or protect against the negative neuro-related consequences caused by a depletion in estrogen as women approach menopause.

9.
Addict Biol ; 27(1): e13107, 2022 01.
Article in English | MEDLINE | ID: mdl-34699111

ABSTRACT

Hazardous, heavy drinking increases risk for developing alcohol use disorder (AUD), which affects ~7% of adult Americans. Thus, understanding the molecular mechanisms promoting risk for heavy drinking is essential to developing more effective AUD pharmacotherapies than those currently approved by the FDA. Using genome-wide bisulfate sequencing, we identified DNA methylation (DNAm) signals within the nucleus accumbens core (NAcC) that differentiate nonheavy and heavy ethanol-drinking rhesus macaques. One differentially DNAm region (D-DMR) located within the gene neurobeachin (NBEA), which promotes synaptic membrane protein trafficking, was hypermethylated in heavy drinking macaques. A parallel study identified a similar NBEA D-DMR in human NAcC that distinguished alcoholic and nonalcoholic individuals. To investigate the role of NBEA in heavy ethanol drinking, we engineered a viral vector carrying a short hairpin RNA (shRNA) to reduce the expression of NBEA. Using two murine models of ethanol consumption: 4 days of drinking-in-the-dark and 4 weeks of chronic intermittent access, the knockdown of NBEA expression did not alter average ethanol consumption in either model. However, it did lead to a significant increase in the ethanol preference ratio. Following withdrawal, whole-cell patch clamp electrophysiological experiments revealed that Nbea knockdown led to an increase in spontaneous excitatory postsynaptic current amplitude with no alteration in spontaneous inhibitory postsynaptic currents, suggesting a specific role of NBEA in trafficking of glutamatergic receptors. Together, our findings suggest that NBEA could be targeted to modulate the preference for alcohol use.


Subject(s)
Alcohol Drinking/genetics , Alcoholism/genetics , Carrier Proteins/genetics , Nerve Tissue Proteins/genetics , Adult , Aged , Animals , DNA Methylation/drug effects , Humans , Macaca mulatta , Male , Mice , Mice, Inbred C57BL , Middle Aged , Nucleus Accumbens/drug effects
10.
Geroscience ; 44(1): 229-252, 2022 02.
Article in English | MEDLINE | ID: mdl-34642852

ABSTRACT

Obesity, the cessation of ovarian steroids with menopause, and age are risk factors for mood disorders, dementia, and Alzheimer's disease (AD). However, immediate hormone therapy (HT) after menopause may have beneficial effects in different brain regions involved in memory and cognition. To more closely replicate the age, endocrine, and metabolic environment of obese postmenopausal women, either on or off HT, middle-aged female rhesus macaques were ovariectomized/hysterectomized (OvH) and maintained on a high-fat, high-sugar, obesogenic Western-style diet (WSD) for 30 months; half of the animals received HT immediately after OvH and half served as placebo controls. RNAseq of the occipital (OC) and prefrontal cortex (PFC), hippocampus (HIP), and amygdala (AMG) identified 293, 379, 505, and 4993 differentially expressed genes (DEGs), respectively. Pathway enrichment analysis identified an activation of neuroinflammation in OC and HIP, but an inhibition in the AMG with HT. Synaptogenesis, circadian rhythm, mitochondrial dysfunction, mTOR, glutamate, serotonin, GABA, dopamine, epinephrine/norepinephrine, glucocorticoid receptor signaling, neuronal NOS, and amyloid processing were exclusively enriched in AMG. As compared to the placebo control group, most of these signaling pathways are downregulated after HT, suggesting a protective effect of HT in OvH females under a WSD. Overall, our results suggest that a chronic obesogenic diet may induce a wide range of alterations in multiple signaling pathways that are linked to age-associated brain pathology and dementia. In these individuals, HT seems to have a protective effect against neuroinflammation, amyloid beta depositions, and tau tangle formation.


Subject(s)
Diet, Western , Estradiol , Amyloid beta-Peptides , Animals , Brain , Diet, Western/adverse effects , Dietary Supplements , Estradiol/pharmacology , Female , Macaca mulatta , Transcriptome
11.
Addict Biol ; 26(5): e13021, 2021 09.
Article in English | MEDLINE | ID: mdl-33942443

ABSTRACT

The nucleus accumbens core (NAcc) has been repeatedly demonstrated to be a key component of the circuitry associated with excessive ethanol consumption. Previous studies have illustrated that in a nonhuman primate (NHP) model of chronic ethanol consumption, there is significant epigenetic remodeling of the NAcc. In the current study, RNA-Seq was used to examine genome-wide gene expression in eight each of control, low/binge (LD*), and high/very high (HD*) rhesus macaque drinkers. Using an FDR < 0.05, zero genes were significantly differentially expressed (DE) between LD* and controls, six genes between HD* and LD*, and 734 genes between HD* and controls. Focusing on HD* versus control DE genes, the upregulated genes (N = 366) were enriched in genes with annotations associated with signal recognition particle (SRP)-dependent co-translational protein targeting to membrane (FDR < 3 × 10-59 ), structural constituent of ribosome (FDR < 3 × 10-47 ), and ribosomal subunit (FDR < 5 × 10-48 ). Downregulated genes (N = 363) were enriched in annotations associated with behavior (FDR < 2 × 10-4 ), membrane organization (FDR < 1 × 10-4 ), inorganic cation transmembrane transporter activity (FDR < 2 × 10-3 ), synapse part (FDR < 4 × 10-10 ), glutamatergic synapse (FDR < 1 × 10-6 ), and GABAergic synapse (FDR < 6 × 10-4 ). Ingenuity Pathway Analysis (IPA) revealed that EIF2 signaling and mTOR pathways were significantly upregulated in HD* animals (FDR < 3 × 10-33 and <2 × 10-16 , respectively). Overall, the data supported our working hypothesis; excessive consumption would be associated with transcriptional differences in GABA/glutamate-related genes.


Subject(s)
Alcohol Drinking/genetics , Macaca mulatta/genetics , Nucleus Accumbens/drug effects , Transcriptome/drug effects , Animals , Ethanol/pharmacology , Gene Expression Profiling , Male , Self Administration , Signal Transduction/drug effects
12.
Neuropsychopharmacology ; 44(6): 1103-1113, 2019 05.
Article in English | MEDLINE | ID: mdl-30610192

ABSTRACT

Alcohol use disorder (AUD) is a chronic condition with devastating health and socioeconomic effects. Still, pharmacotherapies to treat AUD are scarce. In a prior study aimed at identifying novel AUD therapeutic targets, we investigated the DNA methylome of the nucleus accumbens core (NAcc) of rhesus macaques after chronic alcohol use. The G-protein coupled receptor 39 (GPR39) gene was hypermethylated and its expression downregulated in heavy alcohol drinking macaques. GPR39 encodes a Zn2+-binding metabotropic receptor known to modulate excitatory and inhibitory neurotransmission, the balance of which is altered in AUD. These prior findings suggest that a GPR39 agonist would reduce alcohol intake. Using a drinking-in-the-dark two bottle choice (DID-2BC) model, we showed that an acute 7.5 mg/kg dose of the GPR39 agonist, TC-G 1008, reduced ethanol intake in mice without affecting total fluid intake, locomotor activity or saccharin preference. Furthermore, repeated doses of the agonist prevented ethanol escalation in an intermittent access 2BC paradigm (IA-2BC). This effect was reversible, as ethanol escalation followed agonist "wash out". As observed during the DID-2BC study, a subsequent acute agonist challenge during the IA-2BC procedure reduced ethanol intake by ~47%. Finally, Gpr39 activation was associated with changes in Gpr39 and Bdnf expression, and in glutamate release in the NAcc. Together, our findings suggest that GPR39 is a promising target for the development of prevention and treatment therapies for AUD.


Subject(s)
Alcoholism , Behavior, Animal/drug effects , Drinking Behavior/drug effects , Nucleus Accumbens/metabolism , Pyrimidines/pharmacology , Receptors, G-Protein-Coupled/agonists , Sulfonamides/pharmacology , Alcohol Drinking , Alcoholism/drug therapy , Alcoholism/prevention & control , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Macaca mulatta , Mice , Mice, Inbred C57BL , Pyrimidines/administration & dosage , Sulfonamides/administration & dosage
13.
Genomics ; 109(3-4): 214-220, 2017 07.
Article in English | MEDLINE | ID: mdl-28438488

ABSTRACT

Rhesus macaques are an important pre-clinical model of human disease. To advance our understanding of genomic variation that may influence disease, we surveyed genome-wide variation in 21 rhesus macaques. We employed best-practice variant calling, validated with Mendelian inheritance. Next, we used alignment data from our cohort to detect genomic regions likely to produce inaccurate genotypes, potentially due to either gene duplication or structural variation between individuals. We generated a final dataset of >16 million high confidence variants, including 13 million in Chinese-origin rhesus macaques, an increasingly important disease model. We detected an average of 131 mutations predicted to severely alter protein coding per animal, and identified 45 such variants that coincide with known pathogenic human variants. These data suggest that expanded screening of existing breeding colonies will identify novel models of human disease, and that increased genomic characterization can help inform research studies in macaques.


Subject(s)
Disease Models, Animal , Genetic Diseases, Inborn/genetics , Macaca mulatta/genetics , Mutation , Polymorphism, Genetic , Animals , Genomics , Sequence Analysis, DNA
14.
Alcohol ; 60: 103-113, 2017 05.
Article in English | MEDLINE | ID: mdl-27866807

ABSTRACT

Alcohol-use disorders encompass a range of drinking levels and behaviors, including low, binge, and heavy drinking. In this regard, investigating the neural state of individuals who chronically self-administer lower doses of alcohol may provide insight into mechanisms that prevent the escalation of alcohol use. DNA methylation is one of the epigenetic mechanisms that stabilizes adaptations in gene expression and has been associated with alcohol use. Thus, we investigated DNA methylation, gene expression, and the predicted neural effects in the nucleus accumbens core (NAcc) of male rhesus macaques categorized as "low" or "binge" drinkers, compared to "alcohol-naïve" and "heavy" drinkers based on drinking patterns during a 12-month alcohol self-administration protocol. Using genome-wide CpG-rich region enrichment and bisulfite sequencing, the methylation levels of 2.6 million CpGs were compared between alcohol-naïve (AN), low/binge (L/BD), and heavy/very heavy (H/VHD) drinking subjects (n = 24). Through regional clustering analysis, we identified nine significant differential methylation regions (DMRs) that specifically distinguished ANs and L/BDs, and then compared those DMRs among H/VHDs. The DMRs mapped to genes encoding ion channels, receptors, cell adhesion molecules, and cAMP, NF-κß and Wnt signaling pathway proteins. Two of the DMRs, linked to PDE10A and PKD2L2, were also differentially methylated in H/VHDs, suggesting an alcohol-dose independent effect. However, two other DMRs, linked to the CCBE1 and FZD5 genes, had L/BD methylation levels that significantly differed from both ANs and H/VHDs. The remaining five DMRs also differentiated L/BDs and ANs. However, H/VHDs methylation levels were not distinguishable from either of the two groups. Functional validation of two DMRs, linked to FZD5 and PDE10A, support their role in regulating gene expression and exon usage, respectively. In summary, the findings demonstrate that L/BD is associated with unique DNA methylation signatures in the primate NAcc, and that the methylation signatures identify synaptic genes that may play a role in preventing the escalation of alcohol use.


Subject(s)
Alcohol Drinking/genetics , Alcoholism/genetics , Binge Drinking/genetics , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Ethanol/toxicity , Nucleus Accumbens/drug effects , Alcohol Drinking/adverse effects , Animals , Cluster Analysis , CpG Islands , Disease Models, Animal , Exons , Gene Expression Profiling/methods , Gene Expression Regulation , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Macaca mulatta , Male , Nucleus Accumbens/metabolism , Real-Time Polymerase Chain Reaction , Signal Transduction/genetics
15.
BMC Genomics ; 17: 676, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27558348

ABSTRACT

BACKGROUND: Rhesus macaques are widely used in biomedical research, but the application of genomic information in this species to better understand human disease is still in its infancy. Whole-genome sequence (WGS) data in large pedigreed macaque colonies could provide substantial experimental power for genetic discovery, but the collection of WGS data in large cohorts remains a formidable expense. Here, we describe a cost-effective approach that selects the most informative macaques in a pedigree for 30X WGS, followed by low-cost genotyping-by-sequencing (GBS) at 30X on the remaining macaques in order to generate sparse genotype data at high accuracy. Dense variants from the selected macaques with WGS data are then imputed into macaques having only sparse GBS data, resulting in dense genome-wide genotypes throughout the pedigree. RESULTS: We developed GBS for the macaque genome using a digestion with PstI, followed by sequencing of size-selected fragments at 30X coverage. From GBS sequence data collected on all individuals in a 16-member pedigree, we characterized high-confidence genotypes at 22,455 single nucleotide variant (SNV) sites that were suitable for guiding imputation of dense sequence data from WGS. To characterize dense markers for imputation, we performed WGS at 30X coverage on nine of the 16 individuals, yielding 10,193,425 high-confidence SNVs. To validate the use of GBS data for facilitating imputation, we initially focused on chromosome 19 as a test case, using an optimized panel of 833 sparse, evenly-spaced markers from GBS and 5,010 dense markers from WGS. Using the method of "Genotype Imputation Given Inheritance" (GIGI), we evaluated the effects on imputation accuracy of 3 different strategies for selecting individuals for WGS, including 1) using "GIGI-Pick" to select the most informative individuals, 2) using the most recent generation, or 3) using founders only.  We also evaluated the effects on imputation accuracy of using a range of from 1 to 9 WGS individuals for imputation. We found that the GIGI-Pick algorithm for selection of WGS individuals outperformed common heuristic approaches, and that genotype numbers and accuracy improved very little when using >5 WGS individuals for imputation. Informed by our findings, we used 4 macaques with WGS data to impute variants at up to 7,655,491 sites spanning all 20 autosomes in the 12 remaining macaques, based on their GBS genotypes at only 17,158 loci. Using a strict confidence threshold, we imputed an average of 3,680,238 variants per individual at >99 % accuracy, or an average 4,458,883 variants per individual at a more relaxed threshold, yielding >97 % accuracy. CONCLUSIONS: We conclude that an optimal tradeoff between genotype accuracy, number of imputed genotypes, and overall cost exists at the ratio of one individual selected for WGS using the GIGI-Pick algorithm, per 3-5 relatives selected for GBS. This approach makes feasible the collection of accurate, dense genome-wide sequence data in large pedigreed macaque cohorts without the need for more expensive WGS data on all individuals.


Subject(s)
Genotyping Techniques/methods , Macaca mulatta/genetics , Sequence Analysis, DNA/methods , Algorithms , Animals , Chromosomes/genetics , Computational Biology/economics , Computational Biology/methods , Genotyping Techniques/economics , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...