Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Infect Genet Evol ; 106: 105381, 2022 12.
Article in English | MEDLINE | ID: mdl-36309317

ABSTRACT

Island communities are interesting study sites for microbial evolution during epidemics, as their insular nature reduces the complexity of the population's connectivity. This was particularly true on Reunion Island during the first half of 2021, when international travel was restricted in order to mitigate the risk for SARS-CoV-2 introductions. Concurrently, the SARS-CoV-2 Beta variant became dominant and started to circulate at high levels for several months before being completely replaced by the Delta variant as of October 2021. Here, we explore some of the particularities of SARS-CoV-2 genomic evolution within the insular context of Reunion Island. We show that island isolation allowed the amplification and expansion of unique genetic lineages that remained uncommon across the globe. Islands are therefore potential hotspots for the emergence of new genetic variants, meaning that they will play a key role in the continued evolution and propagation of COVID-19 as the pandemic persists.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Genomics , Pandemics
2.
Antioxidants (Basel) ; 12(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36670912

ABSTRACT

Aloe plant species have been used for centuries in traditional medicine and are reported to be an important source of natural products. However, despite the large number of species within the Aloe genus, only a few have been investigated chemotaxonomically. A Molecular Network approach was used to highlight the different chemical classes characterizing the leaves of five Aloe species: Aloe macra, Aloe vera, Aloe tormentorii, Aloe ferox, and Aloe purpurea. Aloe macra, A. tormentorii, and A. purpurea are endemic from the Mascarene Islands comprising Reunion, Mauritius, and Rodrigues. UHPLC-MS/MS analysis followed by a dereplication process allowed the characterization of 93 metabolites. The newly developed MolNotator algorithm was usedfor molecular networking and allowed a better exploration of the Aloe metabolome chemodiversity. The five species appeared rich in polyphenols (anthracene derivatives, flavonoids, phenolic acids). Therefore, the total phenolic content and antioxidant activity of the five species were evaluated, and a DPPH-On-Line-HPLC assay was used to determine the metabolites responsible for the radical scavenging activity. The use of computational tools allowed a better description of the comparative phytochemical profiling of five Aloe species, which showed differences in their metabolite composition, both qualitative and quantitative. Moreover, the molecular network approach combined with the On-Line-HPLC assay allowed the identification of 9 metabolites responsible for the antioxidant activity. Two of them, aloeresin A and coumaroylaloesin, could be the principal metabolites responsible for the activity. From 374 metabolites calculated by MolNator, 93 could be characterized. Therefore, the Aloe species can be a rich source of new chemical structures that need to be discovered.

3.
Adipocyte ; 5(4): 384-388, 2016.
Article in English | MEDLINE | ID: mdl-27994953

ABSTRACT

Chronic low grade inflammation is one of the major metabolic disorders in case of obesity and associated pathologies. By its important secretion function, the role of adipose tissue in this metabolic low grade inflammation is well known. Recently, it was demonstrated that the alarmin high mobility group box protein 1 (HMGB1) is involved in obesity-related pathologies by its increased serum levels in obese compared to normal weight individuals, and by its pro-inflammatory effects. However, the role of HMGB1 on adipocytes inflammation is poorly documented and we propose to investigate this point. Primary culture of human subcutaneous adipocytes were performed from human adipose tissue samples. Cells were treated with recombinant HMGB1 with/without anti-TLR4 antibody and inhibitors of NF-κB and P38 MAPK. Supernatants were collected for IL-6 and MCP-1 ELISA. HMGB1 initiates Toll-like receptor 4 (TLR4)-dependent activation of inflammation through the downstream NF-κB and P38 MAPK signaling pathway to upregulate the secretion of the pro-inflammatory cytokine IL-6. HMGB1 has pro-inflammatory effects on adipocytes. This reinforces the role of TLR4 in adipose tissue inflammation and antagonizing the HMGB1 inflammatory pathway could bring on new therapeutic targets to counteract obesity-associated pathologies.

4.
PLoS One ; 8(9): e76039, 2013.
Article in English | MEDLINE | ID: mdl-24073286

ABSTRACT

Low-grade inflammation (LGI) is a central phenomenon in the genesis of obesity and insulin-resistance characterized by IL-6 in human serum. Whereas this LGI was initially thought to be mainly attributed to macrophage activation, it is now known that pre-adipocytes and adipocytes secrete several adipokines including IL-6 and participate to LGI and associated pathologies. In macrophages, HMGB1 is a nuclear yet secreted protein and acts as a cytokine to drive the production of inflammatory molecules through RAGE and TLR2/4. In this paper we tested the secretion of HMGB1 and the auto- and paracrine contribution to fat inflammation using the human preadipocyte cell line SW872 as a model. We showed that 1) human SW872 secreted actively HMGB1, 2) IL-6 production was positively linked to high levels of secreted HMGB1, 3) recombinant HMGB1 boosted IL-6 expression and this effect was mediated by the receptor RAGE and did not involve TLR2 or TLR4. These results suggest that HMGB1 is a major adipokine contributing to LGI implementation and maintenance, and can be considered as a target to develop news therapeutics in LGI associated pathologies such as obesity and type II diabetes.


Subject(s)
Adipose Tissue/pathology , HMGB1 Protein/metabolism , Inflammation/pathology , Interleukin-6/metabolism , Liposarcoma/metabolism , Receptor for Advanced Glycation End Products/metabolism , Adipose Tissue/metabolism , Blotting, Western , Cell Proliferation , Chronic Disease , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Fluorescent Antibody Technique , HMGB1 Protein/antagonists & inhibitors , HMGB1 Protein/genetics , Humans , Inflammation/metabolism , Interleukin-6/genetics , Liposarcoma/genetics , Liposarcoma/pathology , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Receptor for Advanced Glycation End Products/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Tumor Cells, Cultured
5.
Cytokine ; 64(1): 103-11, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23938155

ABSTRACT

BACKGROUND: Low grade inflammation is one of the major metabolic disorders in case of obesity due to variable secretion of adipose derived cytokines called adipokines. Recently the nuclear protein HMGB1 was identified as an inflammatory alarmin in obesity associated diseases. However HMGB1 role in adipose tissue inflammation is not yet studied. OBJECTIVES: The aim of this study was to prove the expression of HMGB1 in human adipose tissue and to assess the levels of expression between normo-weight and obese individuals. Furthermore we determined which type of cells within adipose tissue is involved in HMGB1 production under inflammatory signal. METHODS: Western-blot was performed on protein lysates from human normo-weight and obese adipose tissue to study the differential HMGB1 expression. Human normo-weight adipose tissue, adipose-derived stromal cells (ASCs) and adipocytes were cultured and stimulated with LPS to induce inflammation. HMGB1, IL-6 and MCP-1 secretion and gene expression were quantified by ELISA and Q-PCR respectively, as well as cell death by LDH assay. HMGB1 translocation during inflammation was tracked down by immunofluorescence in ASCs. RESULTS: HMGB1 was expressed 2-fold more in adipose tissue from obese compared to normo-weight individuals. LPS led to an up-regulation in HMGB1 secretion and gene expression in ASCs, while no change was noticed in adipocytes. Moreover, this HMGB1 release was not attributable to any cell death. In LPS-stimulated ASCs, HMGB1 translocation from nucleus to cytoplasm was detectable at 12h and the nuclear HMGB1 was completely drained out after 24h of treatment. CONCLUSION: The expression level studies between adipose tissue from normo-weight and obese individuals together with in vitro results strongly suggest that adipose tissue secretes HMGB1 in response to inflammatory signals which characterized obesity.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , HMGB1 Protein/metabolism , Inflammation/metabolism , Obesity/metabolism , Adipokines/metabolism , Adipose Tissue/cytology , Adult , Cell Differentiation , Cells, Cultured , Chemokine CCL2/biosynthesis , Female , Gene Expression , HMGB1 Protein/biosynthesis , Humans , Interleukin-6/biosynthesis , Middle Aged
6.
Lipids Health Dis ; 11: 175, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23259689

ABSTRACT

BACKGROUND: On the basis that high fat diet induces inflammation in adipose tissue, we wanted to test the effect of dietary saturated and polysunsaturated fatty acids on human adipose tissue and adipocytes inflammation. Moreover we wanted to determine if TLR2 and TLR4 are involved in this pathway. METHODS: Human adipose tissue and adipocytes primary cultures were treated with endotoxin-free BSA conjugated with SFA (lauric acid and palmitic acid--LA and PA) and PUFA (eicosapentaeneic acid, docosahexaenoic acid and oleic acid--EPA, DHA and OA) with or without LPS. Cytokines were then assayed by ELISA (TNF-alpha, IL-6 and MCP-1). In order to determine if TLR2 and TLR4 are activated by fatty acid (FA), we used HEK-Blue cells transfected by genes from TLR2 or TLR4 pathways associated with secreted alkaline phosphatase reporter gene. RESULTS: None of the FA tested in HEK-Blue cells were able to activate TLR2 or TLR4, which is concordant with the fact that after FA treatment, adipose tissue and adipocytes cytokines levels remain the same as controls. However, all the PUFA tested: DHA, EPA and to a lesser extent OA down-regulated TNF-alpha, IL-6 and MCP-1 secretion in human adipose tissue and adipocytes cultures. CONCLUSIONS: This study first confirms that FA do not activate TLR2 and TLR4. Moreover by using endotoxin-free BSA, both SFA and PUFA tested were not proinflammatory in human adipose tissue and adipocytes model. More interestingly we showed that some PUFA exert an anti-inflammatory action in human adipose tissue and adipocytes model. These results are important since they clarify the relationship between dietary fatty acids and inflammation linked to obesity.


Subject(s)
Adipocytes , Adipose Tissue , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Adipocytes/cytology , Adipocytes/drug effects , Adipose Tissue/drug effects , Adipose Tissue/growth & development , Animals , Cells, Cultured , Diet, High-Fat , Down-Regulation/drug effects , Fatty Acids/administration & dosage , Fatty Acids, Unsaturated/administration & dosage , Humans , Inflammation/genetics , Inflammation/metabolism , Mice
7.
J Inflamm (Lond) ; 8: 33, 2011 Nov 16.
Article in English | MEDLINE | ID: mdl-22087859

ABSTRACT

BACKGROUND: Obesity is characterized by inflammation, caused by increase in proinflammatory cytokines, a key factor for the development of insulin resistance. SR141716A, a cannabinoid receptor 1 (CB1) antagonist, shows significant improvement in clinical status of obese/diabetic patients. Therefore, we studied the effect of SR141716A on human adipocyte inflammatory profile and differentiation. METHODS: Adipocytes were obtained from liposuction. Stromal vascular cells were extracted and differentiated into adipocytes. Media and cells were collected for secretory (ELISA) and expression analysis (qPCR). Triglyceride accumulation was observed using oil red-O staining. Cholesterol was assayed by a fluorometric method. 2-AG and anandamide were quantified using isotope dilution LC-MS. TLR-binding experiments have been conducted in HEK-Blue cells. RESULTS: In LPS-treated mature adipocytes, SR141716A was able to decrease the expression and secretion of TNF-a. This molecule has the same effect in LPS-induced IL-6 secretion, while IL-6 expression is not changed. Concerning MCP-1, the basal level is down-regulated by SR141716A, but not the LPS-induced level. This effect is not caused by a binding of the molecule to TLR4 (LPS receptor). Moreover, SR141716A restored adiponectin secretion to normal levels after LPS treatment. Lastly, no effect of SR141716A was detected on human pre-adipocyte differentiation, although the compound enhanced adiponectin gene expression, but not secretion, in differentiated pre-adipocytes. CONCLUSION: We show for the first time that some clinical effects of SR141716A are probably directly related to its anti-inflammatory effect on mature adipocytes. This fact reinforces that adipose tissue is an important target in the development of tools to treat the metabolic syndrome.

8.
Lipids Health Dis ; 9: 75, 2010 Jul 20.
Article in English | MEDLINE | ID: mdl-20642861

ABSTRACT

BACKGROUND: The risk of cardiovascular disease is inversely correlated to level of plasma HDL-c. Moreover, reverse cholesterol transport (RCT) from peripheral tissues to the liver is the most widely accepted mechanism linked to the anti-atherosclerotic activity of HDL. The apolipoprotein A-I (apoA-I) and the ABC transporters play a key role in this process.Adipose tissue constitutes the body's largest pool of free cholesterol. The adipose cell could therefore be regarded as a key factor in cholesterol homeostasis. The present study investigates the capacity of primary cultures of mature human adipocytes to release cholesterol and explores the relationships between apoA-I, ABCA1, and apoE as well as the signaling pathways that could be potentially involved. RESULTS: We demonstrate that apoA-I induces a strong increase in cholesterol release and apoE secretion from adipocytes, whereas it has no transcriptional effect on ABCA1 or apoE genes. Furthermore, brefeldin A (BFA), an intracellular trafficking inhibitor, reduces basal cholesterol and apoE secretion, but does not modify induction by apoA-I. The use of statins also demonstrates that apoA-I stimulated cholesterol release is independent of HMG-CoA reductase activation. CONCLUSION: Our work highlights the fact that adipose tissue, and particularly adipocytes, may largely contribute to RCT via a mechanism specifically regulated within these cells. This further supports the argument that adipose tissue must be regarded as a major factor in the development of cardiovascular diseases, in particular atherosclerosis.


Subject(s)
Adipocytes/metabolism , Apolipoprotein A-I/physiology , Apolipoproteins E/metabolism , Cardiovascular Diseases/physiopathology , Cholesterol/metabolism , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Adipocytes/drug effects , Adult , Apolipoproteins E/genetics , Atherosclerosis/physiopathology , Cells, Cultured , Cyclic AMP/metabolism , Enzyme Inhibitors/pharmacology , Female , Gene Expression Regulation/drug effects , Humans , Hydroxymethylglutaryl CoA Reductases/metabolism , Middle Aged , Second Messenger Systems/drug effects , Secretory Pathway/drug effects , Subcutaneous Fat/cytology , Subcutaneous Fat/drug effects , Subcutaneous Fat/metabolism , Subcutaneous Fat/physiopathology , Time Factors
9.
J Inflamm (Lond) ; 7: 1, 2010 Jan 08.
Article in English | MEDLINE | ID: mdl-20148136

ABSTRACT

BACKGROUND: The development of obesity has been linked to an inflammatory process, and the role of adipose tissue in the secretion of pro-inflammatory molecules such as IL-6 or TNFalpha has now been largely confirmed. Although TNFalpha secretion by adipose cells is probably induced, most notably by TLR ligands, the activation and secretion pathways of this cytokine are not yet entirely understood. Moreover, given that macrophagic infiltration is a characteristic of obesity, it is difficult to clearly establish the level of involvement of the different cellular types present within the adipose tissue during inflammation. METHODS: Primary cultures of human adipocytes and human peripheral blood mononuclear cells were used. Cells were treated with a pathogen-associated molecular pattern: LPS, with and without several kinase inhibitors. Western blot for p38 MAP Kinase was performed on cell lysates. TNFalpha mRNA was detected in cells by RT-PCR and TNFalpha protein was detected in supernatants by ELISA assays. RESULTS: WE SHOW FOR THE FIRST TIME THAT THE PRODUCTION OF TNFALPHA IN MATURE HUMAN ADIPOCYTES IS MAINLY DEPENDENT UPON TWO PATHWAYS: NFkappaB and p38 MAP Kinase. Moreover, we demonstrate that the PI3Kinase pathway is clearly involved in the first step of the LPS-pathway. Lastly, we show that adipocytes are able to secrete a large amount of TNFalpha compared to macrophages. CONCLUSION: This study clearly demonstrates that the LPS induced activation pathway is an integral part of the inflammatory process linked to obesity, and that adipocytes are responsible for most of the secreted TNFalpha in inflamed adipose tissue, through TLR4 activation.

10.
Obesity (Silver Spring) ; 17(3): 431-8, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19131941

ABSTRACT

Obesity leads to the appearance of an inflammatory process, which can be initiated even with a moderate weight gain. Palmitoylethanolamide (PEA) is an endogenous lipid, secreted by human adipocytes, that possesses numerous anti-inflammatory properties. The main purpose of this study was to investigate the anti-inflammatory effect of PEA on human adipocytes, as well as in a murine model. The production of tumor necrosis factor-alpha (TNF-alpha) by lipopolysaccharide (LPS)-treated human subcutaneous adipocytes in primary culture and CF-1 mice was investigated by enzyme-linked immunosorbent assay. The effects of PEA on adipocyte TNF-alpha secretion were explored as well as some suspected PEA anti-inflammatory pathways: nuclear factor-kappaB (NF-kappaB) pathway, peroxisome proliferator-activated receptor-alpha (PPAR-alpha) gene expression, and TNF-alpha-converting enzyme (TACE) activity. The effects of PEA on the TNF-alpha serum concentration in intraperitoneally LPS-treated mice were also studied. We demonstrate that the LPS induced secretion of TNF-alpha by human adipocytes is inhibited by PEA. This action is neither linked to a reduction in TNF-alpha gene transcription nor to the inhibition of TACE activity. Moreover, PPAR-alpha is not implicated in this anti-inflammatory activity. Lastly, PEA exhibits a wide-reaching anti-inflammatory action as the molecule is able to completely inhibit the strong increase in TNF-alpha levels in the serum of mice treated with high doses of LPS. In view of its virtual lack of toxicity, PEA might become a potentially interesting candidate molecule in the prevention of obesity-associated insulin resistance.


Subject(s)
Adipocytes/drug effects , Adipocytes/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Palmitic Acids/pharmacology , Tumor Necrosis Factor-alpha/metabolism , ADAM Proteins/metabolism , ADAM17 Protein , Adult , Amides , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Endocannabinoids , Ethanolamines , Female , Humans , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred Strains , Middle Aged , Models, Animal , NF-kappa B/metabolism , PPAR alpha/metabolism
11.
Am J Phys Anthropol ; 136(1): 100-7, 2008 May.
Article in English | MEDLINE | ID: mdl-18186507

ABSTRACT

La Réunion, one of the three Mascarene islands located in the Indian Ocean, remained devoid of inhabitants until it was first colonized by the French in the middle of the 17th century. The continuous flow of foreign-born slaves and immigrant workers from Africa, India, Southeast Asia, and China to work on coffee and sugar cane plantations led to the island becoming a melting pot of people of multiple ethnic origins. To establish the impact of the different incoming ethnic groups on the present Reunionese gene pool, we have sequenced both hypervariable regions I and II of the mitochondrial DNA molecule, the 9 bp COII/tRNA(Lys) deletion, and four SNPs located in the coding region in a total of 41 samples of the general population, and a further 18 STRs and 35 SNPs on the Y chromosome in 26 of these samples. Our results show that there was a strong sexual bias (asymmetrical gene flow) in the peopling of La Réunion, where admixture events were mainly between male settlers and females from the incoming slave groups. Most of the Y-chromosome gene pool is of European/Middle Eastern ancestry (85%), whereas the mtDNA gene pool is mainly of Indian and East Asian ancestry (70%). The absence of genetic diversity within these two major components of the mtDNA gene pool suggests these populations may have witnessed strong founder effects during the colonization process.


Subject(s)
Genetics, Population , Chromosomes, Human, Y/classification , Chromosomes, Human, Y/genetics , DNA, Mitochondrial/classification , DNA, Mitochondrial/genetics , Female , Genetic Markers , Humans , Male , Prejudice , Reunion/ethnology
12.
Obesity (Silver Spring) ; 15(4): 837-45, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17426318

ABSTRACT

OBJECTIVE: Recently, an activation of the endocannabinoid system during obesity has been reported. More particularly, it has been demonstrated that hypothalamic levels of both endocannabinoids, 2-arachidonoylglycerol and anandamide (N-arachidonoylethanolamine), are up-regulated in genetically obese rodents. Circulating levels of both endocannabinoids were also shown to be higher in obese compared with lean women. Yet, the direct production of endocannabinoids by human adipocytes has never been demonstrated. Our aim was to evaluate the ability of human adipocytes to produce endocannabinoids. RESEARCH METHODS AND PROCEDURES: The production of endocannabinoids by human adipocytes was investigated in a model of human white subcutaneous adipocytes in primary culture. The effects of leptin, adiponectin, and peroxisome proliferator-activated receptor (PPAR)-gamma activation on endocannabinoid production by adipocytes were explored. Endocannabinoid levels were determined by high-performance liquid chromatography (HPLC)-atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) analysis, leptin and adiponectin secretion measured by enzyme-linked immunosorbent assay (ELISA), and PPAR-gamma protein expression examined by Western blotting. RESULTS: We show that 2-arachidonoylglycerol, anandamide, and both anandamide analogs, N-palmitoylethanolamine and N-oleylethanolamine, are produced by human white subcutaneous adipocytes in concentrations ranging from 0.042+/-0.004 to 0.531+/-0.048 pM/mg lipid extract. N-palmitoylethanolamine is the most abundant cannabimimetic compound produced by human adipocytes, and its levels are significantly down-regulated by leptin but not affected by adiponectin and PPAR-gamma agonist ciglitazone. N-palmitoylethanolamine itself does not affect either leptin or adiponectin secretion or PPAR-gamma protein expression in adipocytes. DISCUSSION: This study has led to the identification of human adipocytes as a new source of endocannabinoids and related compounds. The biological significance of these adipocyte cannabimimetic compounds and their potential implication in obesity should deserve further investigations.


Subject(s)
Adipose Tissue/metabolism , Cannabinoid Receptor Modulators/metabolism , Endocannabinoids , Obesity/metabolism , Adipocytes/metabolism , Adiponectin/metabolism , Adult , Arachidonic Acids/metabolism , Down-Regulation , Female , Glycerides/metabolism , Humans , Lipids/chemistry , Middle Aged , PPAR gamma/metabolism , Polyunsaturated Alkamides/metabolism , Up-Regulation
13.
Histochem Cell Biol ; 127(2): 131-7, 2007 Feb.
Article in English | MEDLINE | ID: mdl-16988837

ABSTRACT

In addition to the well-known role of adipose tissue in energy metabolism, it has recently been demonstrated that this tissue can secrete a large array of molecules, including inflammatory cytokines. Furthermore, recent studies suggest that adipose cells can behave as immune cells. Therefore, the aim of this study was to determine the presence of the two most prominent 'pattern recognition receptors' for bacterial and fungal cell wall components, TLR2 and TLR4 on human adipose cells, as well as to assess their functionality. We demonstrated that TLR2 and TLR4 were expressed at relatively high levels (compared to a monocyte cell line) on the surface of human adipose cells. Stimulation of human adipocytes with lipopolysaccharide (LPS), or with lipoteichoic acid (LTA), two specific ligands of TLR4 and TLR2, respectively, induced a strong increase in TNFalpha production. The specificity of the response was demonstrated by the use of anti-TLR4 and anti-TLR2 blocking antibodies, which were able to decrease LPS- or LTA-induced TNFalpha secretion. Thus, it is clear that these receptors are functional in human adipocytes. This study adds weight to the argument that human fat tissue plays a potential role in innate immunity.


Subject(s)
Adipocytes/immunology , Adipocytes/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism , Adipocytes/cytology , Adult , Female , Humans , Immunity, Innate , Lipopolysaccharides/immunology , Lipopolysaccharides/metabolism , Middle Aged , Teichoic Acids/immunology , Teichoic Acids/metabolism , Toll-Like Receptor 2/immunology , Toll-Like Receptor 2/isolation & purification , Toll-Like Receptor 4/immunology , Toll-Like Receptor 4/isolation & purification , Tumor Necrosis Factor-alpha/agonists , Tumor Necrosis Factor-alpha/immunology
14.
Cytokine ; 34(5-6): 291-6, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16884908

ABSTRACT

N-Palmitoylethanolamide (PEA) is an endogenous lipid secreted by human adipocytes that possesses numerous anti-inflammatory properties. Human adipose tissue can be subjected to modulation of its inflammatory state by lipopolysaccharide (LPS). Here we demonstrate that LPS increases the secretion of interleukin-6 (IL-6) by human mature adipocytes via activation of the NFkappaB pathway. This effect is not inhibited by PEA. Inversely, LPS strongly inhibits adipose cell leptin release, with PEA acting as a potentiator of this inhibitory effect. These actions are not linked to a reduction in leptin gene transcription. Thus, PEA does not have an anti-inflammatory role in the secretion of IL-6 via NFkappaB at the adipocyte level, but instead seems to act at the heart of the LPS-stimulated pathway, which, independently of NFkappaB, inhibits the secretion of leptin.


Subject(s)
Adipocytes/drug effects , Lipopolysaccharides/pharmacology , Palmitic Acids/pharmacology , Adipocytes/metabolism , Adult , Amides , Cells, Cultured , Endocannabinoids , Ethanolamines , Humans , Inflammation/chemically induced , Interleukin-6/metabolism , Leptin/metabolism , Middle Aged , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism
15.
Histochem Cell Biol ; 126(2): 177-87, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16395612

ABSTRACT

To investigate the expression of the endocannabinoid 1 and 2 receptors by human adipocyte cells of omental and subcutaneous fat tissue, as well as to determine whether these receptors are functional. The expression of CB1 and CB2 receptors on human adipocytes was analyzed by western blotting, immunohistology and immunocytology. We also investigated intracytoplasmic cyclic AMP level modulation following CB1 and CB2 receptor stimulation by an enzymatic immuno assay. All mature adipocytes, from visceral (epiploon) and subcutaneous fat tissue, express CB1 and CB2 on their plasma membranes. We also demonstrate in this study that adipocyte precursors (pre-adipocytes) express CB1 and CB2 on their plasma membranes and that both receptors are functional. Activation of CB1 increases intracytoplasmic cyclic AMP whilst CB2 activation leads to a cyclic AMP decrease. Here we demonstrate, for the first time, that adipocytes of human adipose tissue (mature adipocytes and pre-adipocytes) express functional plasma membrane CB1 and CB2 receptors. Their physiological role on the adipose tissue is not known. However, their major involvement in the physiology of other tissues leads us to suppose that they could play a significant role in the homeostasis of the energy balance and/or in the regulation of adipose tissue inflammation.


Subject(s)
Adipocytes/metabolism , Omentum/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Subcutaneous Fat/metabolism , Adult , Cell Membrane/metabolism , Cyclic AMP/metabolism , Cytoplasm/metabolism , Female , Humans , Immunohistochemistry , Male , Middle Aged , Omentum/cytology , Subcutaneous Fat/cytology
16.
Histochem Cell Biol ; 124(2): 113-21, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16032396

ABSTRACT

Adipose tissue contains a stroma that can be easily isolated. Thus, human adipose tissue presents an source of multipotent stromal cells. In order to determine the implication of hematopoietic markers in adipocyte biology, we have defined part of the phenotype of the human adipose tissue-derived stromal cells, and compared this to fully differentiated adipocytes. Flow cytometry demonstrates that the protein expression phenotype of both cell types are similar and includes the expression of CD10, CD13, CD34, CD36, CD55, CD59 and CD65. No significant difference between subcutaneous and omental adipose tissue could be demonstrated concerning the expression of these markers. However, the expression of CD34, CD36 and CD65 is cell-dependent. While the expression of CD36 and CD65 doubled between stromal cells and mature adipocytes, the expression of CD34 decreased, despite this protein being present on the mature adipocyte. As CD34 is described as a stem cell marker and it being unlikely to be expressed on differentiated cells, this result was confirmed by immunostaining and western blot. The clear function of this protein on the adipocyte membrane remains to be determined. The characterization of new proteins on mature adipocytes could have broad implications for the comprehension of the biology of this tissue.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Membrane Proteins/metabolism , Stromal Cells/metabolism , Adipocytes/cytology , Adipose Tissue/cytology , Adult , Aged , Antigens, CD/metabolism , Biomarkers/metabolism , Cell Separation , Cells, Cultured , Female , Flow Cytometry , Humans , Middle Aged , Omentum/cytology , Omentum/metabolism , Stromal Cells/cytology , Subcutaneous Tissue/metabolism
17.
Hum Immunol ; 65(8): 783-93, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15336779

ABSTRACT

In this study, we have investigated the frequencies of TAP1 and TAP2 alleles in a group of 226 persons, living in La Reunion Island, consisting of 70 patients with insulin-dependent diabetes mellitus (IDDM) and most of their first degree relatives (i.e., 156 parents and full sibling subjects) and previously HLA DQB1, DQA1, and DRB1 genotyped. The population of this island is constituted by a particular structure of highly crossbreeding people. Interestingly, the new TAP2*0104 allele, previously discovered by our team in Reunion Island, was found to be increased in the IDDM population and the calculated HRR was relatively high (HRR = 3.3). This result seems to be due to a positive linkage disequilibrium between TAP2*0104 allele and the highly diabetogenous DQB1* 0201-DQA1* 0501-DRB1 0301 haplotype (HRR = 9), which suggests that TAP2*0104 cannot be considered as an additional predispositional factor, but more as a genetic susceptibility marker of IDDM. In addition, we show that minor alleles (TAP2D, *0102, *0103, *0104) are associated with a restricted number of HLA DQ-DR haplotypes and each of them exhibits a preferential linkage with one particular haplotype. In contrast with other alleles, and despite a HRR value close to 1, we show that TAP2*0102 allele contributes significantly to a drastic reduction of the diabetogenic effect of DQB1*0201-DQA1*0301.1-DRB*0701 haplotype. Indeed, this haplotype, which is usually preferentially transmitted to affected children, is dominantly transmitted to healthy children when it is associated with TAP2*0102. Therefore, this allele seems to contribute to genetic protection to IDDM.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Diabetes Mellitus, Type 1/genetics , Gene Frequency , HLA Antigens/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 2 , ATP Binding Cassette Transporter, Subfamily B, Member 3 , DNA Fingerprinting , Diabetes Mellitus, Type 1/prevention & control , Family Health , Genes, MHC Class II , HLA-DQ Antigens/genetics , HLA-DQ alpha-Chains , HLA-DQ beta-Chains , HLA-DR Antigens/genetics , HLA-DRB1 Chains , Haplotypes/genetics , Humans , Linkage Disequilibrium , Telomere/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...