Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 22(6)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809778

ABSTRACT

OBJECTIVE: To explore the effect of physical exercise (EXE), strontium ranelate (SR), or their combination on bone status in ovariectomized (OVX) rats. DESIGN: Sixty female Wistar rats were randomized to one of five groups: sham (Sh), OVX (O), OVX+EXE (OE), OVX+SR (OSR), and OVX+EXE+SR (OESR). Animals in EXE groups were subjected to 10 drops per day (45 cm in height); rats in SR groups received 625 mg/kg/day of SR, 5 days/week for 8 weeks. Bone mineral density (BMD) and bone mineral content (BMC, dual-energy X-ray absorptiometry (DXA)), mechanical strength of the left femur (three-point bending test), and femur microarchitecture of (micro-computed tomography imaging, microCT) analyses were performed to characterize biomechanical and trabecular/cortical structure. Bone remodeling, osteocyte apoptosis, and lipid content were evaluated by ELISA and immunofluorescence tests. RESULTS: In OVX rats, whole-body BMD, trabecular parameters, and osteocalcin (OCN) levels decreased, while weight, lean/fat mass, osteocyte apoptosis, and lipid content all increased. EXE after ovariectomy improved BMD and BMC, trabecular parameters, cross-sectional area (CSA), moment of inertia, and OCN levels while decreasing osteocyte apoptosis and lipid content. SR treatment increased BMD and BMC, trabecular parameters, CSA, stiffness, OCN, and alkaline phosphatase (ALP) levels. Furthermore, fat mass, N-telopeptide (NTX) level, osteocyte apoptosis, and lipid content significantly decreased. The combination of both EXE and SR improved bone parameters compared with EXE or SR alone. CONCLUSION: EXE and SR had positive and synergistic effects on bone formation and resorption.


Subject(s)
Bone Density/drug effects , Ovariectomy , Physical Conditioning, Animal , Thiophenes/pharmacology , Animals , Apoptosis/drug effects , Biomarkers/metabolism , Biomechanical Phenomena/drug effects , Body Composition/drug effects , Bone Remodeling/drug effects , Cancellous Bone/drug effects , Cortical Bone/drug effects , Female , Femur/drug effects , Lipids/chemistry , Osteocytes/drug effects , Rats, Wistar
2.
Life (Basel) ; 11(5)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922149

ABSTRACT

Exercise influences inflammatory response and immune system performance. The regular practice of a moderate activity positively regulates immunity and the inflammatory process, while intensive training depresses it and enhances inflammatory marker secretion. Calprotectin is involved in the inflammatory process, promoting neutrophil recruitment, cell degranulation, and inflammatory mediators. Furthermore, calprotectin has been associated with various inflammatory diseases, including inflammatory rheumatic diseases. The present review explores the effect of exercise on calprotectin levels in both healthy and inflammatory rheumatic conditions. Data show that the intensity duration and the type of exercise modulate calprotectin levels and participant inflammatory status. The exact role of calprotectin in the exercise response is yet unknown. Calprotectin could constitute an interesting biomarker for monitoring both the effect of exercise on the inflammatory process in healthy volunteers and the efficiency of exercise treatment programs in a patient with inflammatory rheumatic disease.

3.
Antioxidants (Basel) ; 10(2)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572126

ABSTRACT

Osteoarthritis (OA) is a complex degenerative disease in which joint homeostasis is disrupted, leading to synovial inflammation, cartilage degradation, subchondral bone remodeling, and resulting in pain and joint disability. Yet, the development of new treatment strategies to restore the equilibrium of the osteoarthritic joint remains a challenge. Numerous studies have revealed that dietary components and/or natural products have anti-inflammatory, antioxidant, anti-bone-resorption, and anabolic potential and have received much attention toward the development of new therapeutic strategies for OA treatment. In the present review, we provide an overview of current and emerging natural-product-based research treatments for OA management by drawing attention to experimental, pre-clinical, and clinical models. Herein, we review current and emerging natural-product-based research treatments for OA management.

4.
Antioxidants (Basel) ; 9(6)2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32560449

ABSTRACT

Andrographis paniculata was widely used in traditional herbal medicine to treat various diseases. This study explored the potential anti-aging activity of Andrographis paniculata in cutaneous cells. Human, adult, low calcium, high temperature (HaCaT) cells were treated with methanolic extract (ME), andrographolide (ANDRO), neoandrographolide (NEO), 14-deoxyandrographolide (14DAP) and 14-deoxy-11,12-didehydroandrographolide (14DAP11-12). Oxidative stress and inflammation were induced by hydrogen peroxide and lipopolysaccharide/TNF-α, respectively. Reactive oxygen species (ROS) production was measured by fluorescence using a 2',7'-dichlorofluorescein diacetate (DCFH-DA) probe and cytokines were quantified by ELISA for interleukin-8 (IL-8) or reverse transcription-quantitative polymerase chain reaction (RT-qPCR) for tumor necrosis factor-α (TNF-α). Hyaluronic acid (HA) secretion was determined by an ELISA. Our results show a decrease in ROS production and TNF-α expression by ME (5 µg/mL) in HaCaT under pro-oxidant and pro-inflammatory conditions, respectively. ME protected HaCaT against oxidative stress and inflammation. Our findings confirm that ME can be used for the development of bioactive compounds against epidermal damage.

5.
Antioxidants (Basel) ; 9(5)2020 May 15.
Article in English | MEDLINE | ID: mdl-32429312

ABSTRACT

Andrographis paniculata (Burm.f.) has long been used in ayurvedic medicine through its anti-inflammatory properties. However, its protective effect of skin aging has not been studied in vitro. This study aimed to investigate the anti-aging effects of methanolic extract (ME), andrographolide (ANDRO), neoandrographolide (NEO), 14-deoxyandrographolide (14DAP) and 14-deoxy-11,12-didehydroandrographolide (14DAP11-12) on human dermal fibroblasts (HDFa) under pro-oxidant or pro-inflammatory condition. The in vitro anti-aging capacity of ME, ANDRO, NEO, 14DAP, and 14DAP11-12 (1, 2.5 and 5 µg/mL) was performed in HDFa. Oxidative stress and inflammation were induced by hydrogen peroxide and lipopolysaccharide/TNF-α, respectively. Reactive oxygen species (ROS) production was measured by the fluorescence of DCF-DA probe and cytokines were quantified by ELISA (IL6 and IL8) or RTqPCR (TNF-α). Procollagen type I production was determined by an ELISA. Our results showed a decrease in ROS production with ME and 14DAP at 5 µg/mL and 1 µg/mL, respectively. Furthermore, IL-6 production and TNF-α expression decreased under ANDRO and ME at 5 µg/mL. Our data indicated that ME and 14DAP protect from oxidative stress. Additionally, ME and ANDRO decreased an inflammation marker, IL-6. This suggests their potential natural treatment against skin damage. Hence, their applications could be of interest in cosmetics for preventing skin ageing.

6.
Sci Rep ; 10(1): 5345, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32210304

ABSTRACT

Crohn's disease is linked to a decreased diversity in gut microbiota composition as a potential consequence of an impaired anti-microbial response and an altered polarization of T helper cells. Here, we evaluated the immunomodulatory properties of two potential probiotic strains, namely a Bifidobacterium animalis spp. lactis Bl 5764 and a Lactobacillus reuteri Lr 5454 strains. Both strains improved colitis triggered by either 2,4,6-trinitrobenzenesulfonic acid (TNBS) or Citrobacter rodentium infection in mice. Training of dendritic cells (DC) with Lr 5454 efficiently triggered IL-22 secretion and regulatory T cells induction in vitro, while IL-17A production by CD4+ T lymphocytes was stronger when cultured with DCs that were primed with Bl 5764. This strain was sufficient for significantly inducing expression of antimicrobial peptides in vivo through the Crohn's disease predisposing gene encoding for the nucleotide-binding oligomerization domain, containing protein 2 (NOD2). In contrast, NOD2 was dispensable for the impact on antimicrobial peptide expression in mice that were monocolonized with Lr 5454. In conclusion, our work highlights a differential mode of action of two potential probiotic strains that protect mice against colitis, providing the rational for a personalized supportive preventive therapy by probiotics for individuals that are genetically predisposed to Crohn's disease.


Subject(s)
Bifidobacterium animalis , Colitis/microbiology , Colitis/therapy , Dendritic Cells/physiology , Limosilactobacillus reuteri , Probiotics/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Citrobacter rodentium/pathogenicity , Colitis/chemically induced , Colitis/pathology , Disease Models, Animal , Enterobacteriaceae Infections/microbiology , Female , Gastrointestinal Microbiome , Germ-Free Life , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Pancreatitis-Associated Proteins/genetics , T-Lymphocytes, Helper-Inducer/physiology , T-Lymphocytes, Regulatory/physiology , Trinitrobenzenesulfonic Acid/toxicity
7.
Antioxidants (Basel) ; 8(12)2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31756965

ABSTRACT

Traditionally, Andrographis paniculata has been used as an herbal remedy for lung infection treatments. Its leaves contain a diterpenoid labdane called andrographolide responsible for a wide range of biological activities such as antioxidant, anti-inflammatory, and anti-cancer properties. This manuscript is a brief review of the antioxidant mechanisms and the regulation of the Nrf2 (nuclear factor (erythroid-derived 2)-like 2) signaling pathway by andrographolide.

8.
PLoS One ; 14(8): e0221528, 2019.
Article in English | MEDLINE | ID: mdl-31437241

ABSTRACT

Expressed strongly by myeloid cells, damage-associated molecular pattern (DAMP) proteins S100A8 and S100A9 are found in the serum of patients with infectious and autoimmune diseases. Compared to S100A9, the role of S100A8 is controversial. We investigated its biological activity in collagen-induced arthritis using the first known viable and fertile S100a8-deficient (S100a8-/-) mouse. Although comparable to the wild type (WT) in terms of lymphocyte distribution in blood and in the primary and secondary lymphoid organs, S100a8-/- mice had increased numbers of neutrophils, monocytes and dendritic cells in the blood and bone marrow, and these all expressed myeloid markers such as CD11b, Ly6G and CD86 more strongly. Granulocyte-macrophage common precursors were increased in S100a8-/- bone marrow and yielded greater numbers of macrophages and dendritic cells in culture. The animals also developed more severe arthritic disease leading to aggravated osteoclast activity and bone destruction. These findings were correlated with increased inflammatory cell infiltration and cytokine secretion in the paws. This study suggests that S100A8 is an anti-inflammatory DAMP that regulates myeloid cell differentiation, thereby mitigating the development of experimental arthritis.


Subject(s)
Arthritis, Experimental/pathology , Calgranulin A/deficiency , Myelopoiesis , Animals , Arthritis, Experimental/diagnostic imaging , Bone Marrow/pathology , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Calgranulin A/metabolism , Cartilage/pathology , Cell Differentiation , Dendritic Cells/metabolism , Female , Gene Deletion , Mice , Myeloid Cells/pathology
9.
Scand J Med Sci Sports ; 29(8): 1072-1082, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31033061

ABSTRACT

Regular physical activity has been suggested as having both preventive and therapeutic benefits for individuals with osteoarthritis (OA). However, evidence of whether exercise and which type of exercise constitutes a benefit or a risk in the development and progression of OA remains debatable. This may be due to the evaluation of the effect of physical activity or new disease-modifying OA drugs which is currently based on radiographic criteria (eg, joint space width) and the lack of correlation with clinical signs and symptoms (eg, pain and loss of function). Moreover, OA typically manifests itself as changes within the joint space and subchondral bone as well as the whole joint structure, including progressive degradation of cartilage, menisci, ligaments, and synovial inflammation. Biomarkers are being developed to quantify joint remodeling and disease progression notably involving the articular cartilage and synovial fluid. The primary purpose of this review was to evaluate the current literature and to provide further insight based on OA biomarkers and the role physical activity plays in the management of OA. Osteoarthritis biomarkers together with radiographic imaging evidence will ideally guide healthcare providers to incorporate exercise recommendations into clinical management and offer patients evidence-based and individually tailored exercise prescriptions.


Subject(s)
Biomarkers/analysis , Cartilage, Articular/physiology , Exercise , Osteoarthritis/therapy , Synovial Fluid/chemistry , Animals , Cartilage, Articular/pathology , Disease Models, Animal , Disease Progression , Humans , Osteoarthritis/pathology
10.
Proc Natl Acad Sci U S A ; 115(41): 10404-10409, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30249647

ABSTRACT

Prominent changes in the gut microbiota (referred to as "dysbiosis") play a key role in the development of allergic disorders, but the underlying mechanisms remain unknown. Study of the delayed-type hypersensitivity (DTH) response in mice contributed to our knowledge of the pathophysiology of human allergic contact dermatitis. Here we report a negative regulatory role of the RIG-I-like receptor adaptor mitochondrial antiviral signaling (MAVS) on DTH by modulating gut bacterial ecology. Cohousing and fecal transplantation experiments revealed that the dysbiotic microbiota of Mavs-/- mice conferred a proallergic phenotype that is communicable to wild-type mice. DTH sensitization coincided with increased intestinal permeability and bacterial translocation within lymphoid organs that enhanced DTH severity. Collectively, we unveiled an unexpected impact of RIG-I-like signaling on the gut microbiota with consequences on allergic skin disease outcome. Primarily, these data indicate that manipulating the gut microbiota may help in the development of therapeutic strategies for the treatment of human allergic skin pathologies.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Dysbiosis/complications , Gastrointestinal Microbiome/immunology , Hypersensitivity/etiology , Intestines/immunology , Skin Diseases, Bacterial/etiology , Animals , Disease Models, Animal , Female , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Hypersensitivity/metabolism , Hypersensitivity/pathology , Intestines/microbiology , Intestines/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Signal Transduction , Skin Diseases, Bacterial/metabolism , Skin Diseases, Bacterial/pathology
11.
Int J Mol Sci ; 18(8)2017 Aug 12.
Article in English | MEDLINE | ID: mdl-28805694

ABSTRACT

Recent research has confirmed the presence of Mesenchymal stem cell (MSC)-like progenitors (MPC) in both normal and osteoarthritic cartilage. However, there is only limited information concerning how MPC markers are expressed with osteoarthritis (OA) progression. The purpose of this study was to compare the prevalence of various MPC markers in different OA grades. Human osteoarthritic tibial plateaus were obtained from ten patients undergoing total knee replacement. Each sample had been classified into a mild or severe group according to OARSI scoring. Tissue was taken from each specimen and mRNA expression levels of CD105, CD166, Notch 1, Sox9, Acan and Col II A1 were measured at day 0 and day 14 (2 weeks in vitro). Furthermore, MSC markers: Nucleostemin, CD90, CD73, CD166, CD105 and Notch 1 were studied by immunofluorescence. mRNA levels of MSC markers did not differ between mild and severe OA at day 0. At day 14, protein analysis showed that proliferated cells from both sources expressed all 6 MSC markers. Only cells from the mild OA subjects resulted in a significant increase of mRNA CD105 and CD166 after in vitro expansion. Moreover, cells from the mild OA subjects showed significantly higher levels of CD105, Sox9 and Acan compared with those from severe OA specimens. Results confirmed the presence of MSC markers in mild and severe OA tissue at both mRNA and protein levels. We found significant differences between cells obtained from mild compared to severe OA specimens suggests that mild OA derived cells may have a greater MSC potential.


Subject(s)
Cartilage, Articular/pathology , Knee Joint/pathology , Mesenchymal Stem Cells/pathology , Osteoarthritis, Knee/pathology , Aged , Aged, 80 and over , Antigens, CD/analysis , Antigens, CD/genetics , Biomarkers/analysis , Cartilage, Articular/metabolism , Cell Adhesion Molecules, Neuronal/analysis , Cell Adhesion Molecules, Neuronal/genetics , Cell Differentiation , Endoglin/analysis , Endoglin/genetics , Fetal Proteins/analysis , Fetal Proteins/genetics , Humans , Knee Joint/metabolism , Mesenchymal Stem Cells/metabolism , Middle Aged , Osteoarthritis, Knee/genetics , RNA, Messenger/analysis , RNA, Messenger/genetics , SOX9 Transcription Factor/analysis , SOX9 Transcription Factor/genetics , Transcriptome
12.
J Immunol ; 195(9): 4426-37, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26385519

ABSTRACT

Recognition of viral dsRNA by endosomal TLR3 activates innate immune response during virus infection. Trafficking of TLR3 to the endolysosomal compartment arising from fusion of late endosome (LE) with lysosome is required for recognition and detection of pathogen associated molecular patterns, which results in activation of the TLR3-dependent signaling cascade. Existing knowledge about the mechanism(s) and cellular factor(s) governing TLR3 trafficking is limited. In the current study, we identified intracellular S100A9 protein as a critical regulator of TLR3 trafficking. S100A9 was required for maturation of TLR3 containing early endosome (EE) into LE, the compartment that fuses with lysosome to form the endolysosomal compartment. A drastic reduction in cytokine production was observed in S100A9-knockout (KO) primary macrophages following RNA virus infection and treatment of cells with polyinosinic-polycytidylic acid (polyIC; a dsRNA mimetic that acts as a TLR3 agonist). Mechanistic studies revealed colocalization and interaction of S100A9 with TLR3 following polyIC treatment. S100A9-TLR3 interaction was critical for maturation of TLR3 containing EE into LE because TLR3 could not be detected in the LE of polyIC-treated S100A9-KO macrophages. Subsequently, TLR3 failed to colocalize with its agonist (i.e., biotin-labeled polyIC) in S100A9-deficient macrophages. The in vivo physiological role of S100A9 was evident from loss of cytokine production in polyIC-treated S100A9-KO mice. Thus, we identified intracellular S100A9 as a regulator of TLR3 signaling and demonstrated that S100A9 functions during pre-TLR3 activation stages by facilitating maturation of TLR3 containing EE into LE.


Subject(s)
Calgranulin B/immunology , Macrophages/immunology , RNA Viruses/immunology , Toll-Like Receptor 3/immunology , Animals , Blotting, Western , Calgranulin B/genetics , Calgranulin B/metabolism , Cell Line , Cell Line, Tumor , Cells, Cultured , Female , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Interferon-beta/genetics , Interferon-beta/immunology , Interferon-beta/metabolism , Macrophages/metabolism , Macrophages/virology , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Poly I-C/immunology , Poly I-C/pharmacology , Protein Transport/drug effects , Protein Transport/immunology , RNA Interference , RNA Viruses/physiology , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/immunology , Toll-Like Receptor 3/metabolism
13.
PLoS Pathog ; 10(1): e1003848, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24391503

ABSTRACT

Pathogen-associated molecular patterns (PAMPs) trigger host immune response by activating pattern recognition receptors like toll-like receptors (TLRs). However, the mechanism whereby several pathogens, including viruses, activate TLRs via a non-PAMP mechanism is unclear. Endogenous "inflammatory mediators" called damage-associated molecular patterns (DAMPs) have been implicated in regulating immune response and inflammation. However, the role of DAMPs in inflammation/immunity during virus infection has not been studied. We have identified a DAMP molecule, S100A9 (also known as Calgranulin B or MRP-14), as an endogenous non-PAMP activator of TLR signaling during influenza A virus (IAV) infection. S100A9 was released from undamaged IAV-infected cells and extracellular S100A9 acted as a critical host-derived molecular pattern to regulate inflammatory response outcome and disease during infection by exaggerating pro-inflammatory response, cell-death and virus pathogenesis. Genetic studies showed that the DDX21-TRIF signaling pathway is required for S100A9 gene expression/production during infection. Furthermore, the inflammatory activity of extracellular S100A9 was mediated by activation of the TLR4-MyD88 pathway. Our studies have thus, underscored the role of a DAMP molecule (i.e. extracellular S100A9) in regulating virus-associated inflammation and uncovered a previously unknown function of the DDX21-TRIF-S100A9-TLR4-MyD88 signaling network in regulating inflammation during infection.


Subject(s)
Adaptor Proteins, Vesicular Transport/immunology , Calgranulin B/immunology , DEAD-box RNA Helicases/immunology , Influenza A Virus, H1N1 Subtype/immunology , Myeloid Differentiation Factor 88/immunology , Orthomyxoviridae Infections/immunology , Signal Transduction/immunology , Toll-Like Receptor 4/immunology , Adaptor Proteins, Vesicular Transport/genetics , Animals , Calgranulin B/genetics , DEAD-box RNA Helicases/genetics , Dogs , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Inflammation/virology , Madin Darby Canine Kidney Cells , Mice , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/pathology , Signal Transduction/genetics , Toll-Like Receptor 4/genetics
14.
Inflamm Bowel Dis ; 20(4): 767-70, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24351661

ABSTRACT

Although a causing viral infectious agent remains untraceable in Crohn's disease, most recent genome-wide association studies have linked the FUT2 W143X mutation (resulting in asymptomatic norovirus infection) with the pathogenesis of Crohn's ileitis and with vitamin B12 deficiency (i.e., a known risk factor for Crohn's disease with ileal involvement). In line with these findings, host variations in additional genes involved in host response to norovirus infection (such as ATG16L1 and NOD2) predispose humans to Crohn's ileitis. One may therefore presume that asymptomatic norovirus infection may contribute to disruption of the stability of the gut microbiota leading to Crohn's ileitis. These paradigms highlight not only the need to revisit the potential transmissibility of Crohn's disease, but also potential safety issues of forthcoming clinical trials on human probiotic infusions in Crohn's ileitis by rigorous donors screening program.


Subject(s)
Caliciviridae Infections/complications , Crohn Disease/genetics , Crohn Disease/virology , Fucosyltransferases/genetics , Ileitis/genetics , Ileitis/virology , Norovirus , Alcohol Oxidoreductases , Asymptomatic Infections , Autophagy-Related Proteins , Carrier Proteins/genetics , Dysbiosis/genetics , Genetic Predisposition to Disease , Humans , Nod2 Signaling Adaptor Protein/genetics , Galactoside 2-alpha-L-fucosyltransferase
15.
J Immunol ; 191(12): 5941-50, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24244022

ABSTRACT

Th17 cells play a critical role in the pathogenesis of rheumatoid arthritis (RA), but the mechanisms by which these cells regulate the development of RA are not fully understood. We have recently shown that α2ß1 integrin, the receptor of type I collagen, is the major collagen-binding integrin expressed by human Th17 cells. In this study, we examined the role of α2ß1 integrin in Th17-mediated destructive arthritis in the murine model of collagen-induced arthritis (CIA). We found that α2ß1 integrin is expressed on synovial Th17 cells from CIA mice and its neutralization with a specific mAb significantly reduced inflammation and cartilage degradation, and protected the mice from bone erosion. Blockade of α2ß1 integrin led to a decrease in the number of Th17 cells in the joints and to a reduction of IL-17 levels in CIA mice. This was associated with an inhibition of receptor activator of NF-κB ligand levels and osteoclast numbers, and reduction of bone loss. We further show that α2ß1 integrin is expressed on synovial Th17 cells from RA patients, and that its ligation with collagen costimulated the production of IL-17 by polarized human Th17 cells by enhancing the expression of retinoic acid receptor-related orphan receptor C through ERK and PI3K/AKT. Our findings provide the first evidence, to our knowledge, that α2ß1 integrin is an important pathway in Th17 cell activation in the pathogenesis of CIA, suggesting that its blockade can be beneficial for the treatment of RA and other Th17-associated autoimmune diseases.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Arthritis, Experimental/therapy , Arthritis, Rheumatoid/metabolism , Integrin alpha2beta1/physiology , Osteolysis/prevention & control , Receptors, Collagen/physiology , Th17 Cells/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibody Specificity , Arthritis, Experimental/immunology , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/immunology , Cartilage, Articular/pathology , Collagen/pharmacology , Cricetinae , Down-Regulation , Female , Humans , Inflammation , Integrin alpha2beta1/antagonists & inhibitors , Interleukin-17/blood , Lymphocyte Activation , MAP Kinase Signaling System , Mice , Mice, Inbred DBA , NF-kappa B/physiology , Nuclear Receptor Subfamily 1, Group F, Member 3/biosynthesis , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Osteoclasts/pathology , Osteolysis/etiology , Phosphatidylinositol 3-Kinases/physiology , Proto-Oncogene Proteins c-akt/physiology , RANK Ligand/blood , Receptors, Collagen/antagonists & inhibitors , Signal Transduction , Synovial Membrane/metabolism , Synovial Membrane/pathology , Th17 Cells/physiology
16.
PLoS Negl Trop Dis ; 7(9): e2461, 2013.
Article in English | MEDLINE | ID: mdl-24086787

ABSTRACT

The myeloid-related proteins (MRPs) 8/14 are small proteins mainly produced by neutrophils, which have been reported to induce NO production in macrophages. On the other hand, Leishmania survives and multiplies within phagocytes by inactivating several of their microbicidal functions. Whereas MRPs are rapidly released during the innate immune response, their role in the regulation of Leishmaniasis is still unknown. In vitro experiments revealed that Leishmania infection alters MRP-induced signaling, leading to inhibition of macrophage functions (NO, TNF-α). In contrast, MRP-primed cells showed normal signaling activation and NO production in response to Leishmania infection. Using a murine air-pouch model, we observed that infection with L. major induced leukocyte recruitment and MRP secretion comparable to LPS-treated mice. Depletion of MRPs significantly reduced these inflammatory events and augmented both parasite load and footpad swelling during the first 8 weeks post-infection, as also observed in MRP KO mice. On the contrary, mouse treatment with recombinant MRPs (rMRPs) had the opposite effect. Collectively, our results suggest that rapid secretion of MRPs by neutrophils at the site of infection may protect uninfected macrophages and favor a more efficient innate inflammatory response against Leishmania infection. In summary, our study reveals the critical role played by MRPs in the regulation of Leishmania infection and how this pathogen can subvert its action.


Subject(s)
Calgranulin A/metabolism , Calgranulin B/metabolism , Host-Pathogen Interactions , Leishmania major/immunology , Leishmaniasis/immunology , Leishmaniasis/pathology , Neutrophils/immunology , Animals , Disease Models, Animal , Disease Progression , Immune Tolerance , Macrophages/immunology , Mice , Mice, Knockout , Signal Transduction
17.
PLoS One ; 8(8): e72138, 2013.
Article in English | MEDLINE | ID: mdl-23977231

ABSTRACT

S100A8 and S100A9 are cytoplasmic proteins expressed by phagocytes. High concentrations of these proteins have been correlated with various inflammatory conditions, including autoimmune diseases such as rheumatoid arthritis and Crohn's disease, as well as autoinflammatory diseases. In the present study, we examined the effects of S100A8 and S100A9 on the secretion of cytokines and chemokines from PBMCs. S100A8 and S100A9 induced the secretion of cytokines such as IL-6, IL-8, and IL-1ß. This secretion was associated with the activation and translocation of the transcription factor NF-κB. Inhibition studies using antisense RNA and the pharmacological agent BAY-117082 confirmed the involvement of NF-κB in IL-6, IL-8, and IL-1ß secretion. S100A8- and S100A9-mediated activation of NF-κB, the NLR family, pyrin domain-containing 3 (NLRP3) protein, and pro-IL-1ß expression was dependent on the generation of reactive oxygen species. This effect was synergistically enhanced by ATP, a known inflammasome activator. These results suggest that S100A8 and S100A9 enhance the inflammatory response by inducing cytokine secretion of PBMCs.


Subject(s)
Calgranulin A/physiology , Calgranulin B/physiology , Carrier Proteins/metabolism , Cytokines/metabolism , Reactive Oxygen Species/metabolism , CARD Signaling Adaptor Proteins , Cells, Cultured , Cytokines/genetics , Cytoskeletal Proteins/metabolism , Gene Expression , Inflammasomes , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/pharmacology , NF-kappa B p50 Subunit/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Protein Transport , Transcription Factor RelA/metabolism , Transcriptional Activation
18.
PLoS One ; 7(12): e51727, 2012.
Article in English | MEDLINE | ID: mdl-23272151

ABSTRACT

Invading bacteria are recognized, captured and killed by a specialized form of autophagy, called xenophagy. Recently, defects in xenophagy in Crohn's disease (CD) have been implicated in the pathogenesis of human chronic inflammatory diseases of uncertain etiology of the gastrointestinal tract. We show here that pathogenic adherent-invasive Escherichia coli (AIEC) isolated from CD patients are able to adhere and invade neutrophils, which represent the first line of defense against bacteria. Of particular interest, AIEC infection of neutrophil-like PLB-985 cells blocked autophagy at the autolysosomal step, which allowed intracellular survival of bacteria and exacerbated interleukin-8 (IL-8) production. Interestingly, this block in autophagy correlated with the induction of autophagic cell death. Likewise, stimulation of autophagy by nutrient starvation or rapamycin treatment reduced intracellular AIEC survival and IL-8 production. Finally, treatment with an inhibitor of autophagy decreased cell death of AIEC-infected neutrophil-like PLB-985 cells. In conclusion, excessive autophagy in AIEC infection triggered cell death of neutrophils.


Subject(s)
Autophagy/immunology , Escherichia coli/immunology , Inflammation/immunology , Inflammation/microbiology , Neutrophils/immunology , Neutrophils/microbiology , Bacterial Adhesion/immunology , Cell Death/immunology , Cell Line , Escherichia coli/metabolism , Humans , Neutrophils/pathology , Signal Transduction
19.
PLoS One ; 7(9): e45478, 2012.
Article in English | MEDLINE | ID: mdl-23029038

ABSTRACT

OBJECTIVE: The S100A9 and S100A8 proteins are highly expressed by neutrophils and monocytes and are part of a group of damage-associated molecular pattern molecules that trigger inflammatory responses. Sera and synovial fluids of patients with rheumatoid arthritis (RA) contain high concentrations of S100A8/A9 that correlate with disease activity. METHODS: In this study, we investigated the importance of S100A9 in RA by using neutralizing antibodies in a murine lipopolysaccharide-synchronized collagen-induced arthritis model. We also used an in vitro model of stimulation of human immune cells to decipher the role played by S100A9 in leukocyte migration and pro-inflammatory cytokine secretion. RESULTS: Treatment with anti-S100A9 antibodies improved the clinical score by 50%, diminished immune cell infiltration, reduced inflammatory cytokines, both in serum and in the joints, and preserved bone/collagen integrity. Stimulation of neutrophils with S100A9 protein led to the enhancement of neutrophil transendothelial migration. S100A9 protein also induced the secretion by monocytes of proinflammatory cytokines like TNFα, IL-1ß and IL-6, and of chemokines like MIP-1α and MCP-1. CONCLUSION: The effects of anti-S100A9 treatment are likely direct consequences of inhibiting the S100A9-mediated promotion of neutrophil transmigration and secretion of pro-inflammatory cytokines from monocytes. Collectively, our results show that treatment with anti-S100A9 may inhibit amplification of the immune response and help preserve tissue integrity. Therefore, S100A9 is a promising potential therapeutic target for inflammatory diseases like rheumatoid arthritis for which alternative therapeutic strategies are needed.


Subject(s)
Arthritis, Experimental/immunology , Calgranulin B/immunology , Inflammation/immunology , Leukocyte L1 Antigen Complex/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Arthritis, Experimental/metabolism , Autoantibodies/blood , Autoantibodies/immunology , Bone and Bones/pathology , Calgranulin B/metabolism , Cartilage/pathology , Cell Adhesion/drug effects , Cell Adhesion/immunology , Cytokines/immunology , Cytokines/metabolism , Female , Humans , Inflammation/metabolism , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Leukocyte L1 Antigen Complex/metabolism , Mice , Monocytes/drug effects , Monocytes/immunology , Neutrophils/drug effects , Neutrophils/immunology , Transendothelial and Transepithelial Migration/drug effects , Transendothelial and Transepithelial Migration/immunology , Tumor Necrosis Factor-alpha/pharmacology
20.
Nat Genet ; 43(3): 242-5, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21278745

ABSTRACT

Susceptibility to Crohn's disease, a complex inflammatory disease, is influenced by common variants at many loci. The common exonic synonymous SNP (c.313C>T) in IRGM, found in strong linkage disequilibrium with a deletion polymorphism, has been classified as non-causative because of the absence of an alteration in the IRGM protein sequence or splice sites. Here we show that a family of microRNAs (miRNAs), miR-196, is overexpressed in the inflammatory intestinal epithelia of individuals with Crohn's disease and downregulates the IRGM protective variant (c.313C) but not the risk-associated allele (c.313T). Subsequent loss of tight regulation of IRGM expression compromises control of intracellular replication of Crohn's disease-associated adherent invasive Escherichia coli by autophagy. These results suggest that the association of IRGM with Crohn's disease arises from a miRNA-based alteration in IRGM regulation that affects the efficacy of autophagy, thereby implicating a synonymous polymorphism as a likely causal variant.


Subject(s)
Autophagy/genetics , Crohn Disease/genetics , GTP-Binding Proteins/genetics , MicroRNAs/metabolism , Polymorphism, Single Nucleotide , Binding Sites , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Humans , Intestinal Mucosa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...