Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Plant Dis ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38037208

ABSTRACT

In October 2022, v-shaped necrotic lesions were observed on the leaf margins of field-grown winter oilseed rape (WOSR), Brassica napus L., in western France (Ille-et-Vilaine (35) and Maine-et-Loire (49) departments). Disease incidence on volunteers and cultivated WOSR was generally low (5-10 %) but occasionally up to 80% on some fields. Leaf sections sampled from the margin of necrotic leaf tissue were dilacerated in sterile deionized water and the extract was spread onto tryptone soya agar (TSA) with cycloheximide (100 mg.L-1) and Polyflor (Syngenta, France) (2ml.L-1, containing 5 mg.L-1 propiconazole) then incubated at 28°C for 2 days. Colonies were yellow-pigmented, mucoid, and convex, which are morphological characteristics of Xanthomonas spp. colonies. The partial fyuA and gyrB gene sequences were amplified for eight isolated strains (CFBP 9155, CFBP 9156, CFBP 9157, CFBP 9158, CFBP 9159, CFBP 9161, CFBP 9162, and CFBP 9163) using primers of Fargier et al. (2011), and sequenced (Genoscreen, France). The sequences were deposited under numbers OR232891 to OR232898 for fyuA and OR634932 to OR634939 for gyrB. BLASTN analysis of the sequenced fyuA amplicon showed 100% identity and query coverage with the fyuA fragment of Xanthomonas campestris pv. campestris (Xcc) CFBP 6865R (Bellenot et al., 2022). BLASTN analysis of the sequenced gyrB amplicon showed two allelic forms: one showed 100% identity and query coverage with the gyrB fragment of Xcc strain CFBP 6865R (Bellenot et al., 2022), the other one showed 100% identity and query coverage with the type strain Xcc CFBP 5241 (ATCC33913) (Vorhölter et al., 2003). Moreover, two qPCR tools were used to identify the strains successfully as Xcc (Köhl et al., 2011; Rezki et al., 2016) which target the same gene encoding a hypothetical protein and whose primers overlap. The pathogenicity of the eight isolated strains was validated using a bacterial suspension (108 CFU.ml-1) for i) leaf spraying until runoff onto the leaf surfaces of WOSR plants previously maintained at saturated humidity for 48 hours, ii) wound-leaf inoculation of the two youngest true leaves with scissors that had been dipped into the bacterial suspension. Both tests were performed on 3-week-old WOSR plants of the Aviso (INRAE) genotype. Deionized water was used as negative control. Strains CFBP 5241 and the strain CFBP 4954 (Fargier et al., 2007) were used as positive controls for disease expression. Tested plants (seven for spray inoculation and four for wound-leaf inoculation per strain and control condition) were incubated in a greenhouse at 20°C/24°C (night/day). Isolated strains and the strain CFBP 4954 caused yellow lesions with both inoculation methods that necrotized starting about 10 days post inoculation (dpi). The spots coalesced within 14 dpi to form necrotic areas. The type strain CFBP 5241 caused mild symptoms, with only yellow lesions that did not coalesce. Plants inoculated with water remained symptomless. To complete Koch's postulate, re-isolations were achieved. Re-isolated strains on TSA showed the same colony morphology as described above. All re-isolated strains were identified as Xcc based on partial gyrB sequencing and Xcc specific qPCR test (Rezki et al., 2016). This first report in France and the recent identification in Serbia (Popovic et al., 2013) may illustrate the emergence of the disease on this crop in Europe. The prevalence and consequences of this disease should be evaluated over a wider geographic area.

2.
Commun Biol ; 6(1): 103, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36707697

ABSTRACT

Of American origin, a wide diversity of Xylella fastidiosa strains belonging to different subspecies have been reported in Europe since 2013 and its discovery in Italian olive groves. Strains from the subspecies multiplex (ST6 and ST7) were first identified in France in 2015 in urban and natural areas. To trace back the most probable scenario of introduction in France, the molecular evolution rate of this subspecies was estimated at 3.2165 × 10-7 substitutions per site per year, based on heterochronous genome sequences collected worldwide. This rate allowed the dating of the divergence between French and American strains in 1987 for ST6 and in 1971 for ST7. The development of a new VNTR-13 scheme allowed tracing the spread of the bacterium in France, hypothesizing an American origin. Our results suggest that both sequence types were initially introduced and spread in Provence-Alpes-Côte d'Azur (PACA); then they were introduced in Corsica in two waves from the PACA bridgehead populations.


Subject(s)
Xylella , France , Europe , Italy , Xylella/genetics
3.
mSystems ; 6(5): e0059121, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34698548

ABSTRACT

Xylella fastidiosa (Xf) is a globally distributed plant-pathogenic bacterium. The primary control strategy for Xf diseases is eradicating infected plants; therefore, timely and accurate detection is necessary to prevent crop losses and further pathogen dispersal. Conventional Xf diagnostics primarily relies on quantitative PCR (qPCR) assays. However, these methods do not consider new or emerging variants due to pathogen genetic recombination and sensitivity limitations. We developed and tested a metagenomics pipeline using in-house short-read sequencing as a complementary approach for affordable, fast, and highly accurate Xf detection. We used metagenomics to identify Xf to the strain level in single- and mixed-infected plant samples at concentrations as low as 1 pg of bacterial DNA per gram of tissue. We also tested naturally infected samples from various plant species originating from Europe and the United States. We identified Xf subspecies in samples previously considered inconclusive with real-time PCR (quantification cycle [Cq], >35). Overall, we showed the versatility of the pipeline by using different plant hosts and DNA extraction methods. Our pipeline provides taxonomic and functional information for Xf diagnostics without extensive knowledge of the disease. This pipeline demonstrates that metagenomics can be used for early detection of Xf and incorporated as a tool to inform disease management strategies. IMPORTANCE Destructive Xylella fastidiosa (Xf) outbreaks in Europe highlight this pathogen's capacity to expand its host range and geographical distribution. The current disease diagnostic approaches are limited by a multiple-step process, biases to known sequences, and detection limits. We developed a low-cost, user-friendly metagenomic sequencing tool for Xf detection. In less than 3 days, we were able to identify Xf subspecies and strains in field-collected samples. Overall, our pipeline is a diagnostics tool that could be easily extended to other plant-pathogen interactions and implemented for emerging plant threat surveillance.

4.
Viruses ; 13(5)2021 04 21.
Article in English | MEDLINE | ID: mdl-33919362

ABSTRACT

Xylella fastidiosa (Xf) is a plant pathogen causing significant losses in agriculture worldwide. Originating from America, this bacterium caused recent epidemics in southern Europe and is thus considered an emerging pathogen. As the European regulations do not authorize antibiotic treatment in plants, alternative treatments are urgently needed to control the spread of the pathogen and eventually to cure infected crops. One such alternative is the use of phage therapy, developed more than 100 years ago to cure human dysentery and nowadays adapted to agriculture. The first step towards phage therapy is the isolation of the appropriate bacteriophages. With this goal, we searched for phages able to infect Xf strains that are endemic in the Mediterranean area. However, as Xf is truly a fastidious organism, we chose the phylogenetically closest and relatively fast-growing organism X. albineans as a surrogate host for the isolation step. Our results showed the isolation from various sources and preliminary characterization of several phages active on different Xf strains, namely, from the fastidiosa (Xff), multiplex (Xfm), and pauca (Xfp) subspecies, as well as on X. albilineans. We sequenced their genomes, described their genomic features, and provided a phylogeny analysis that allowed us to propose new taxonomic elements. Among the 14 genomes sequenced, we could identify two new phage species, belonging to two new genera of the Caudoviricetes order, namely, Usmevirus (Podoviridae family) and Subavirus (Siphoviridae family). Interestingly, no specific phages could be isolated from infected plant samples, whereas one was isolated from vector insects captured in a contaminated area, and several from surface and sewage waters from the Marseille area.


Subject(s)
Bacteriophages/physiology , Plants/microbiology , Xanthomonas/virology , Xylella/virology , Bacteriophages/classification , Bacteriophages/isolation & purification , Bacteriophages/ultrastructure , DNA, Viral , Host Specificity , Phylogeny , Plant Diseases/microbiology , Viral Tropism , Virulence , Xanthomonas/isolation & purification , Xylella/isolation & purification
5.
mSystems ; 5(2)2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32234775

ABSTRACT

High proliferation rate and robustness are vital characteristics of bacterial pathogens that successfully colonize their hosts. The observation of drastically slow growth in some pathogens is thus paradoxical and remains unexplained. In this study, we sought to understand the slow (fastidious) growth of the plant pathogen Xylella fastidiosa Using genome-scale metabolic network reconstruction, modeling, and experimental validation, we explored its metabolic capabilities. Despite genome reduction and slow growth, the pathogen's metabolic network is complete but strikingly minimalist and lacking in robustness. Most alternative reactions were missing, especially those favoring fast growth, and were replaced by less efficient paths. We also found that the production of some virulence factors imposes a heavy burden on growth. Interestingly, some specific determinants of fastidious growth were also found in other slow-growing pathogens, enriching the view that these metabolic peculiarities are a pathogenicity strategy to remain at a low population level.IMPORTANCE Xylella fastidiosa is one of the most important threats to plant health worldwide, causing disease in the Americas on a range of agricultural crops and trees, and recently associated with a critical epidemic affecting olive trees in Europe. A main challenge for the detection of the pathogen and the development of physiological studies is its fastidious growth, as the generation time can vary from 10 to 100 h for some strains. This physiological peculiarity is shared with several human pathogens and is poorly understood. We performed an analysis of the metabolic capabilities of X. fastidiosa through a genome-scale metabolic model of the bacterium. This model was reconstructed and manually curated using experiments and bibliographical evidence. Our study revealed that fastidious growth most probably results from different metabolic specificities such as the absence of highly efficient enzymes or a global inefficiency in virulence factor production. These results support the idea that the fragility of the metabolic network may have been shaped during evolution to lead to the self-limiting behavior of X. fastidiosa.

6.
Front Plant Sci ; 10: 489, 2019.
Article in English | MEDLINE | ID: mdl-31057588

ABSTRACT

The pathovar viticola of Xanthomonas citri causes bacterial canker of grapevine. This disease was first recorded in India in 1972, and later in Brazil in 1998, where its distribution is currently restricted to the northeastern region. A multilocus sequence analysis (MLSA) based on seven housekeeping genes and a multilocus variable number of tandem repeat analysis (MLVA) with eight loci were performed in order to assess the genetic relatedness among strains from India and Brazil. Strains isolated in India from three related pathovars affecting Vitaceae species and pathogenic strains isolated from Amaranthus sp. found in bacterial canker-infected vineyards in Brazil were also included. MLSA revealed lack of diversity in all seven genes and grouped grapevine and Amaranthus strains in a monophyletic group in X. citri. The VNTR (variable number of tandem repeat) typing scheme conducted on 107 strains detected 101 haplotypes. The total number of alleles per locus ranged from 5 to 12. A minimum spanning tree (MST) showed that Brazilian strains were clearly separated from Indian strains, which showed unique alleles at three loci. The two strains isolated from symptomatic Amaranthus sp. presented unique alleles at two loci. STRUCTURE analyses revealed three groups congruent with MST and a fourth group with strains from India and Brazil. Admixture among populations were observed in all groups. MST, STRUCTURE and e-BURST analyses showed that the strains collected in 1998 belong to two distinct groups, with predicted founder genotypes from two different vineyards in the same region. This suggest that one introduction of grape planting materials contaminated with genetically distinct strains took place, which was followed by pathogen adaptation. Genome sequencing of one Brazilian strain confirmed typical attributes of pathogenic xanthomonads and allowed the design of a complementary VNTR typing scheme dedicated to X. citri pv. viticola that will allow further epidemiological survey of this genetically monomorphic pathovar.

7.
Front Plant Sci ; 10: 1732, 2019.
Article in English | MEDLINE | ID: mdl-31956326

ABSTRACT

Xylella fastidiosa (Xf) is an insect-borne bacterium confined to the xylem vessels of plants. This plant pathogen has a broad host range estimated to 560 plant species. Five subspecies of the pathogen with different but overlapping host ranges have been described, but only three subspecies are widely accepted, namely subspecies fastidiosa, multiplex, and pauca. Initially limited to the Americas, Xf has been detected in Europe since 2013. As management of X. fastidiosa outbreaks in Europe depends on the identification of the subspecies, accurate determination of the subspecies in infected plants as early as possible is of major interest. Thus, we developed various tetraplex and triplex quantitative PCR (qPCR) assays for X. fastidiosa detection and subspecies identification in planta in a single reaction. We designed primers and probes using SkIf, a bioinformatics tool based on k-mers, to detect specific signatures of the species and subspecies from a data set of 58 genome sequences representative of X. fastidiosa diversity. We tested the qPCR assays on 39 target and 30 non-target strains, as well as on 13 different plant species spiked with strains of the different subspecies of X. fastidiosa, and on samples from various environmental and inoculated host plants. Sensitivity of simplex assays was equal or slightly better than the reference protocol on purified DNA. Tetraplex qPCR assays had the same sensitivity than the reference protocol and allowed X. fastidiosa detection in all spiked matrices up to 103 cells.ml-1. Moreover, mix infections of two to three subspecies could be detected in the same sample with tetraplex assays. In environmental plant samples, the tetraplex qPCR assays allowed subspecies identification when the current method based on multilocus sequence typing failed. The qPCR assays described here are robust and modular tools that are efficient for differentiating X. fastidiosa subspecies directly in plant samples.

8.
PLoS One ; 11(9): e0163729, 2016.
Article in English | MEDLINE | ID: mdl-27669415

ABSTRACT

Xanthomonas arboricola pv. pruni is the causal agent of the bacterial spot disease of stone fruits, almond and some ornamental Prunus species. In Spain it was first detected in 2002 and since then, several outbreaks have occurred in different regions affecting mainly Japanese plum, peach and almond, both in commercial orchards and nurseries. As the origin of the introduction(s) was unknown, we have assessed the genetic diversity of 239 X. arboricola pv. pruni strains collected from 11 Spanish provinces from 2002 to 2013 and 25 reference strains from international collections. We have developed an optimized multilocus variable number of tandem repeat analysis (MLVA) scheme targeting 18 microsatellites and five minisatellites. A high discriminatory power was achieved since almost 50% of the Spanish strains were distinguishable, confirming the usefulness of this genotyping technique at small spatio-temporal scales. Spanish strains grouped in 18 genetic clusters (conservatively delineated so that each cluster contained haplotype networks linked by up to quadruple-locus variations). Furthermore, pairwise comparisons among populations from different provinces showed a strong genetic differentiation. Our results suggest multiple introductions of this pathogen in Spain and redistribution through contaminated nursery propagative plant material.

9.
Braz. j. microbiol ; 47(3): 529-530, July-Sept. 2016. tab
Article in English | LILACS | ID: lil-788969

ABSTRACT

ABSTRACT Pseudomonas syringae pv. actinidifoliorum causes necrotic spots on the leaves of Actinidia deliciosa and Actinidia chinensis. P. syringae pv. actinidifoliorum has been detected in New Zealand, Australia, France and Spain. Four lineages were previously identified within the P. syringae pv. actinidifoliorum species group. Here, we report the draft genome sequences of five strains of P. syringae pv. actinidifoliorum representative of lineages 1, 2 and 4, isolated in France. The whole genomes of strains isolated in New Zealand, representative of P. syringae pv. actinidifoliorum lineages 1 and 3, were previously sequenced. The availability of supplementary P. syringae pv. actinidifoliorum genome sequences will be useful for developing molecular tools for pathogen detection and for performing comparative genomic analyses to study the relationship between P. syringae pv. actinidifoliorum and other kiwifruit pathogens, such as P. syringae pv. actinidiae.


Subject(s)
Genome, Viral , Sequence Analysis, DNA , Pseudomonas syringae/classification , Pseudomonas syringae/genetics , Plant Diseases/microbiology , Genomics/methods , Pseudomonas syringae/isolation & purification , High-Throughput Nucleotide Sequencing
10.
Annu Rev Phytopathol ; 54: 163-87, 2016 08 04.
Article in English | MEDLINE | ID: mdl-27296145

ABSTRACT

How pathogens coevolve with and adapt to their hosts are critical to understanding how host jumps and/or acquisition of novel traits can lead to new disease emergences. The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria that collectively infect a broad range of crops and wild plant species. However, individual Xanthomonas strains usually cause disease on only a few plant species and are highly adapted to their hosts, making them pertinent models to study host specificity. This review summarizes our current understanding of the molecular basis of host specificity in the Xanthomonas genus, with a particular focus on the ecology, physiology, and pathogenicity of the bacterium. Despite our limited understanding of the basis of host specificity, type III effectors, microbe-associated molecular patterns, lipopolysaccharides, transcriptional regulators, and chemotactic sensors emerge as key determinants for shaping host specificity.


Subject(s)
Genome, Bacterial , Host Specificity , Plant Diseases/microbiology , Xanthomonas/physiology , Xanthomonas/genetics
11.
Braz J Microbiol ; 47(3): 529-30, 2016.
Article in English | MEDLINE | ID: mdl-27237113

ABSTRACT

Pseudomonas syringae pv. actinidifoliorum causes necrotic spots on the leaves of Actinidia deliciosa and Actinidia chinensis. P. syringae pv. actinidifoliorum has been detected in New Zealand, Australia, France and Spain. Four lineages were previously identified within the P. syringae pv. actinidifoliorum species group. Here, we report the draft genome sequences of five strains of P. syringae pv. actinidifoliorum representative of lineages 1, 2 and 4, isolated in France. The whole genomes of strains isolated in New Zealand, representative of P. syringae pv. actinidifoliorum lineages 1 and 3, were previously sequenced. The availability of supplementary P. syringae pv. actinidifoliorum genome sequences will be useful for developing molecular tools for pathogen detection and for performing comparative genomic analyses to study the relationship between P. syringae pv. actinidifoliorum and other kiwifruit pathogens, such as P. syringae pv. actinidiae.


Subject(s)
Genome, Viral , Pseudomonas syringae/classification , Pseudomonas syringae/genetics , Sequence Analysis, DNA , Genomics/methods , High-Throughput Nucleotide Sequencing , Plant Diseases/microbiology , Pseudomonas syringae/isolation & purification
12.
Appl Environ Microbiol ; 81(16): 5395-410, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26048944

ABSTRACT

Xanthomonas arboricola is conventionally known as a taxon of plant-pathogenic bacteria that includes seven pathovars. This study showed that X. arboricola also encompasses nonpathogenic bacteria that cause no apparent disease symptoms on their hosts. The aim of this study was to assess the X. arboricola population structure associated with walnut, including nonpathogenic strains, in order to gain a better understanding of the role of nonpathogenic xanthomonads in walnut microbiota. A multilocus sequence analysis (MLSA) was performed on a collection of 100 X. arboricola strains, including 27 nonpathogenic strains isolated from walnut. Nonpathogenic strains grouped outside clusters defined by pathovars and formed separate genetic lineages. A multilocus variable-number tandem-repeat analysis (MLVA) conducted on a collection of X. arboricola strains isolated from walnut showed that nonpathogenic strains clustered separately from clonal complexes containing Xanthomonas arboricola pv. juglandis strains. Some nonpathogenic strains of X. arboricola did not contain the canonical type III secretion system (T3SS) and harbored only one to three type III effector (T3E) genes. In the nonpathogenic strains CFBP 7640 and CFBP 7653, neither T3SS genes nor any of the analyzed T3E genes were detected. This finding raises a question about the origin of nonpathogenic strains and the evolution of plant pathogenicity in X. arboricola. T3E genes that were not detected in any nonpathogenic isolates studied represent excellent candidates to be those responsible for pathogenicity in X. arboricola.


Subject(s)
Juglans/microbiology , Phylogeny , Type III Secretion Systems/genetics , Xanthomonas/classification , Xanthomonas/genetics , Cluster Analysis , Genotype , Minisatellite Repeats , Molecular Sequence Data , Multilocus Sequence Typing , Plant Diseases/microbiology , Sequence Homology , Xanthomonas/isolation & purification
13.
Front Plant Sci ; 6: 1126, 2015.
Article in English | MEDLINE | ID: mdl-26734033

ABSTRACT

The bacterial species Xanthomonas arboricola contains plant pathogenic and nonpathogenic strains. It includes the pathogen X. arboricola pv. juglandis, causing the bacterial blight of Juglans regia. The emergence of a new bacterial disease of J. regia in France called vertical oozing canker (VOC) was previously described and the causal agent was identified as a distinct genetic lineage within the pathovar juglandis. Symptoms on walnut leaves and fruits are similar to those of a bacterial blight but VOC includes also cankers on trunk and branches. In this work, we used comparative genomics and physiological tests to detect differences between four X. arboricola strains isolated from walnut tree: strain CFBP 2528 causing walnut blight (WB), strain CFBP 7179 causing VOC and two nonpathogenic strains, CFBP 7634 and CFBP 7651, isolated from healthy walnut buds. Whole genome sequence comparisons revealed that pathogenic strains possess a larger and wider range of mobile genetic elements than nonpathogenic strains. One pathogenic strain, CFBP 7179, possessed a specific integrative and conjugative element (ICE) of 95 kb encoding genes involved in copper resistance, transport and regulation. The type three effector repertoire was larger in pathogenic strains than in nonpathogenic strains. Moreover, CFBP 7634 strain lacked the type three secretion system encoding genes. The flagellar system appeared incomplete and nonfunctional in the pathogenic strain CFBP 2528. Differential sets of chemoreceptor and different repertoires of genes coding adhesins were identified between pathogenic and nonpathogenic strains. Besides these differences, some strain-specific differences were also observed. Altogether, this study provides valuable insights to highlight the mechanisms involved in ecology, environment perception, plant adhesion and interaction, leading to the emergence of new strains in a dynamic environment.

14.
J Microbiol Methods ; 100: 84-90, 2014 May.
Article in English | MEDLINE | ID: mdl-24631558

ABSTRACT

Xanthomonas arboricola is an important bacterial species, the pathovars of which are responsible for bacterial blight diseases on stone fruit, hazelnut, Persian walnut, poplar, strawberry, poinsettia and banana. In this study, we evaluated variable number tandem repeats (VNTR) as a molecular typing tool for assessing the genetic diversity within pathovars of X. arboricola. Screening of the X. arboricola pv. pruni genome sequence (CFBP5530 strain) predicted 51 candidate VNTR loci. Primer pairs for polymerase chain reaction (PCR) amplification of all 51 loci were designed, and their discriminatory power was initially evaluated with a core collection of 8 X. arboricola strains representative of the different pathovars. Next, the 26 polymorphic VNTR loci present in all strains were used for genotyping a collection of 61 strains. MLVA is a typing method that clearly differentiates X. arboricola strains. The MLVA scheme described in this study is a rapid and reliable molecular typing tool that can be used for further epidemiological studies of bacterial diseases caused by X. arboricola pathovars.


Subject(s)
Minisatellite Repeats , Molecular Typing/methods , Xanthomonas/classification , Xanthomonas/genetics , DNA Primers/genetics , DNA, Bacterial/genetics , Genotype , Molecular Epidemiology/methods , Plant Diseases/microbiology , Xanthomonas/isolation & purification
16.
FEMS Microbiol Lett ; 257(2): 221-7, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16553857

ABSTRACT

In this work we present evidence of an opposite regulation in the phytopathogenic bacteria Erwinia amylovora between the virulence-associated Type III secretion system (TTSS) and the flagellar system. Using loss-of-function mutants we show that motility enhanced the virulence of wild-type bacteria relative to a nonmotile mutant when sprayed on apple seedlings with unwounded leaves. Then we demonstrated through analyses of motility, flagellin export and visualization of flagellar filament that HrpL, the positive key regulator of the TTSS, also down-regulates the flagellar system. Such a dual regulation mediated by an alternative sigma factor of the TTSS appears to be a level of regulation between virulence and motility not yet described among Proteobacteria.


Subject(s)
Bacterial Proteins/genetics , Erwinia amylovora/genetics , Flagellin/genetics , Gene Expression Regulation, Bacterial , Plant Diseases/microbiology , Sigma Factor/genetics , Bacterial Proteins/metabolism , Down-Regulation , Erwinia amylovora/pathogenicity , Plant Leaves/microbiology , Rosaceae/microbiology , Seedlings/microbiology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...