Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 17(1): 57, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336752

ABSTRACT

BACKGROUND: The blacklegged tick, Ixodes scapularis, transmits most vector-borne diseases in the US. It vectors seven pathogens of public health relevance, including the emerging human pathogen Anaplasma phagocytophilum. Nevertheless, it remains critically understudied compared to other arthropod vectors. Ixodes scapularis releases a variety of molecules that assist in the modulation of host responses. Recently, it was found that extracellular vesicles (EVs) carry several of these molecules and may impact microbial transmission to the mammalian host. EV biogenesis has been studied in mammalian systems and is relatively well understood, but the molecular players important for the formation and secretion of EVs in arthropods of public health relevance remain elusive. RabGTPases are among the major molecular players in mammalian EV biogenesis. They influence membrane identity and vesicle budding, uncoating, and motility. METHODS: Using BLAST, an in silico pathway for EV biogenesis in ticks was re-constructed. We identified Rab27 for further study. EVs were collected from ISE6 tick cells after knocking down rab27 to examine its role in tick EV biogenesis. Ixodes scapularis nymphs were injected with small interfering RNAs to knock down rab27 and then fed on naïve and A. phagocytophilum-infected mice to explore the importance of rab27 in tick feeding and bacterial acquisition. RESULTS: Our BLAST analysis identified several of the proteins involved in EV biogenesis in ticks, including Rab27. We show that silencing rab27 in I. scapularis impacts tick fitness. Additionally, ticks acquire less A. phagocytophilum after rab27 silencing. Experiments in the tick ISE6 cell line show that silencing of rab27 causes a distinct range profile of tick EVs, indicating that Rab27 is needed to regulate EV biogenesis. CONCLUSIONS: Rab27 is needed for successful tick feeding and may be important for acquiring A. phagocytophilum during a blood meal. Additionally, silencing rab27 in tick cells results in a shift of extracellular vesicle size. Overall, we have observed that Rab27 plays a key role in tick EV biogenesis and the tripartite interactions among the vector, the mammalian host, and a microbe it encounters.


Subject(s)
Anaplasma phagocytophilum , Arthropod Proteins , Extracellular Vesicles , Ixodes , rab27 GTP-Binding Proteins , Animals , Humans , Mice , Anaplasma phagocytophilum/physiology , Ixodes/cytology , Ixodes/metabolism , Ixodes/microbiology , Mammals , Extracellular Vesicles/metabolism , rab27 GTP-Binding Proteins/metabolism , Arthropod Proteins/metabolism
2.
J Cell Sci ; 132(6)2019 03 18.
Article in English | MEDLINE | ID: mdl-30886004

ABSTRACT

Vector-borne diseases cause over 700,000 deaths annually and represent 17% of all infectious illnesses worldwide. This public health menace highlights the importance of understanding how arthropod vectors, microbes and their mammalian hosts interact. Currently, an emphasis of the scientific enterprise is at the vector-host interface where human pathogens are acquired and transmitted. At this spatial junction, arthropod effector molecules are secreted, enabling microbial pathogenesis and disease. Extracellular vesicles manipulate signaling networks by carrying proteins, lipids, carbohydrates and regulatory nucleic acids. Therefore, they are well positioned to aid in cell-to-cell communication and mediate molecular interactions. This Review briefly discusses exosome and microvesicle biogenesis, their cargo, and the role that nanovesicles play during pathogen spread, host colonization and disease pathogenesis. We then focus on the role of extracellular vesicles in dictating microbial pathogenesis and host immunity during transmission of vector-borne pathogens.


Subject(s)
Arthropod Vectors , Extracellular Vesicles , Vector Borne Diseases , Amebiasis/parasitology , Amebiasis/transmission , Animals , Arthropod Vectors/microbiology , Arthropod Vectors/parasitology , Culicidae/microbiology , Culicidae/parasitology , Disease Vectors , Exosomes/immunology , Exosomes/microbiology , Exosomes/parasitology , Extracellular Vesicles/immunology , Extracellular Vesicles/microbiology , Extracellular Vesicles/parasitology , Filariasis/parasitology , Filariasis/transmission , Hemiptera/microbiology , Hemiptera/parasitology , Host-Parasite Interactions/immunology , Host-Parasite Interactions/physiology , Humans , Immunomodulation , Leishmaniasis/parasitology , Leishmaniasis/transmission , Malaria/parasitology , Malaria/transmission , Psychodidae/microbiology , Psychodidae/parasitology , Trypanosomiasis/parasitology , Trypanosomiasis/transmission , Vector Borne Diseases/microbiology , Vector Borne Diseases/parasitology , Vector Borne Diseases/transmission , Virus Diseases/microbiology , Virus Diseases/transmission
3.
Nat Rev Microbiol ; 15(9): 544-558, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28626230

ABSTRACT

It is estimated that approximately one billion people are at risk of infection with obligate intracellular bacteria, but little is known about the underlying mechanisms that govern their life cycles. The difficulty in studying Chlamydia spp., Coxiella spp., Rickettsia spp., Anaplasma spp., Ehrlichia spp. and Orientia spp. is, in part, due to their genetic intractability. Recently, genetic tools have been developed; however, optimizing the genomic manipulation of obligate intracellular bacteria remains challenging. In this Review, we describe the progress in, as well as the constraints that hinder, the systematic development of a genetic toolbox for obligate intracellular bacteria. We highlight how the use of genetically manipulated pathogens has facilitated a better understanding of microbial pathogenesis and immunity, and how the engineering of obligate intracellular bacteria could enable the discovery of novel signalling circuits in host-pathogen interactions.


Subject(s)
Bacterial Infections/genetics , Bacterial Infections/immunology , Bacterial Toxins/genetics , DNA, Bacterial/immunology , Genetic Engineering , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Bacterial Infections/pathology , Bacterial Toxins/immunology , Genome, Bacterial/immunology , Humans
4.
Nat Commun ; 8: 14401, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28195158

ABSTRACT

The insect immune deficiency (IMD) pathway resembles the tumour necrosis factor receptor network in mammals and senses diaminopimelic-type peptidoglycans present in Gram-negative bacteria. Whether unidentified chemical moieties activate the IMD signalling cascade remains unknown. Here, we show that infection-derived lipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) and 1-palmitoyl-2-oleoyl diacylglycerol (PODAG) stimulate the IMD pathway of ticks. The tick IMD network protects against colonization by three distinct bacteria, that is the Lyme disease spirochete Borrelia burgdorferi and the rickettsial agents Anaplasma phagocytophilum and A. marginale. Cell signalling ensues in the absence of transmembrane peptidoglycan recognition proteins and the adaptor molecules Fas-associated protein with a death domain (FADD) and IMD. Conversely, biochemical interactions occur between x-linked inhibitor of apoptosis protein (XIAP), an E3 ubiquitin ligase, and the E2 conjugating enzyme Bendless. We propose the existence of two functionally distinct IMD networks, one in insects and another in ticks.


Subject(s)
Arthropods/immunology , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/veterinary , Ixodes/immunology , Lipids/adverse effects , Lipids/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Anaplasma marginale/immunology , Anaplasma marginale/pathogenicity , Anaplasma phagocytophilum/immunology , Anaplasma phagocytophilum/pathogenicity , Animals , Arthropods/metabolism , Borrelia burgdorferi/immunology , Borrelia burgdorferi/pathogenicity , Carrier Proteins , Disease Models, Animal , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Escherichia coli/genetics , Fas-Associated Death Domain Protein , Gene Silencing , HEK293 Cells , Humans , Ixodes/metabolism , Lyme Disease/immunology , Phosphatidylglycerols/immunology , RNA, Small Interfering/metabolism , Recombinant Proteins , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , X-Linked Inhibitor of Apoptosis Protein/metabolism
5.
Exp Appl Acarol ; 66(3): 427-42, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25894426

ABSTRACT

The Ixodes scapularis embryo-derived cell line ISE6 is the most widely utilized tick-derived cell line due to its susceptibility to a wide variety of tick- and non-tick-vectored pathogens. Little is known about its tissue origin or biological background. Protein expression of ISE6 cells was compared with that of another I. scapularis-derived cell line, IDE12, and dissected tick synganglia. Results demonstrated the presence of a neuronal marker protein, type 3 ß-tubulin, in all three samples, as well as other shared and unique neuronal and immune response-associated proteins. Of neuronal proteins shared between the two cell lines, ISE6 expressed several in significantly greater quantities than IDE12. Stimulation of ISE6 cells by in vivo exposure to the hemocoel environment in unfed larval and molting nymphal ticks, but not unfed nymphal ticks, resulted in the development of neuron-like morphologic characteristics in the implanted cells.


Subject(s)
Arthropod Proteins/analysis , Cell Line/cytology , Ixodes/cytology , Ixodes/genetics , Proteome , Animals , Cell Line/metabolism , Female , Immunochemistry , Ixodes/growth & development , Larva/cytology , Larva/genetics , Larva/growth & development , Male , Neurons/cytology , Nymph/cytology , Nymph/genetics , Nymph/growth & development , Phenotype
6.
PLoS One ; 7(4): e36012, 2012.
Article in English | MEDLINE | ID: mdl-22558307

ABSTRACT

Antigenic variation of major surface proteins is considered an immune-evasive maneuver used by pathogens as divergent as bacteria and protozoa. Likewise, major surface protein 2 (Msp2) of the tick-borne pathogen, Anaplasma marginale, is thought to be involved in antigenic variation to evade the mammalian host immune response. However, this dynamic process also works in the tick vector in the absence of immune selection pressure. We examined Msp2 variants expressed during infection of four tick and two mammalian cell-lines to determine if the presence of certain variants correlated with specific host cell types. Anaplasma marginale colonies differed in their development and appearance in each of the cell lines (P<0.001). Using Western blots probed with two Msp2-monospecific and one Msp2-monoclonal antibodies, we detected expression of variants with differences in molecular weight. Immunofluorescence-assay revealed that specific antibodies bound from 25 to 60% of colonies, depending on the host cell-line (P<0.001). Molecular analysis of cloned variant-encoding genes demonstrated expression of different predominant variants in tick (V1) and mammalian (V2) cell-lines. Analysis of the putative secondary structure of the variants revealed a change in structure when A. marginale was transferred from one cell-type to another, suggesting that the expression of particular Msp2 variants depended on the cell-type (tick or mammalian) in which A. marginale developed. Similarly, analysis of the putative secondary structure of over 200 Msp2 variants from ticks, blood samples, and other mammalian cells available in GenBank showed the predominance of a specific structure during infection of a host type (tick versus blood sample), demonstrating that selection of a possible structure also occurred in vivo. The selection of a specific structure in surface proteins may indicate that Msp2 fulfils an important role in infection and adaptation to diverse host systems. Supplemental Abstract in Spanish (File S1) is provided.


Subject(s)
Anaplasma marginale/growth & development , Anaplasma marginale/immunology , Antigenic Variation/immunology , Antigens, Bacterial/metabolism , Bacterial Outer Membrane Proteins/metabolism , Mammals/microbiology , Ticks/microbiology , Alleles , Amino Acid Sequence , Anaplasmosis/blood , Anaplasmosis/microbiology , Animals , Antibodies, Bacterial/immunology , Antigens, Bacterial/chemistry , Bacterial Outer Membrane Proteins/chemistry , Cattle , Cell Line , Colony Count, Microbial , Computational Biology , Molecular Sequence Data , Protein Structure, Secondary , Sequence Alignment , Species Specificity
7.
Vet Parasitol ; 167(2-4): 167-74, 2010 Feb 10.
Article in English | MEDLINE | ID: mdl-19837516

ABSTRACT

The tick-borne pathogen, Anaplasma marginale, has a complex life cycle involving ruminants and ixodid ticks. It causes bovine anaplasmosis, a disease with significant economic impact on cattle farming worldwide. The obligate intracellular growth requirement of the bacteria poses a challenging obstacle to their genetic manipulation, a problem shared with other prokaryotes in the genera Anaplasma, Ehrlichia, and Rickettsia. Following our successful transformation of the human anaplasmosis agent, A. phagocytophilum, we produced plasmid constructs (a transposon bearing plasmid, pHimarAm-trTurboGFP-SS, and a transposase expression plasmid, pET28Am-trA7) designed to mediate random insertion of the TurboGFP and spectinomycin/streptomycin resistance genes by the Himar1 allele A7 into the A. marginale chromosome. In these trans constructs, expression of the fluorescent and the selectable markers on the transposon, and expression of the transposase are under control of the A. marginale tr promoter. Constructs were co-electroporated into A. marginale St. Maries purified from tick cell culture, and bacteria incubated for 2 months under selection with a combination of spectinomycin and streptomycin. At that time, < or =1% of tick cells contained colonies of brightly fluorescent Anaplasma, which eventually increased to infect about 80-90% of the cells. Cloning of the insertion site in E. coli and DNA sequence analyses demonstrated insertion of the entire plasmid pHimarAm-trTurboGFP-SS encoding the transposon in frame into the native tr region of A. marginale in an apparent single homologous crossover event not mediated by the transposase. Transformants are fastidious and require longer subculture intervals than wild type A. marginale. This result suggests that A. marginale, as well as possibly other species of Anaplasma and Ehrlichia, can be transformed using a strategy of homologous recombination.


Subject(s)
Anaplasma marginale/genetics , Transformation, Bacterial/genetics , Animals , Anti-Bacterial Agents/pharmacology , Cell Line , DNA, Bacterial , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Selection, Genetic , Spectinomycin/pharmacology , Streptomycin/pharmacology , Ticks/cytology
SELECTION OF CITATIONS
SEARCH DETAIL