Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
HGG Adv ; 5(2): 100276, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38310352

ABSTRACT

Expression quantitative trait loci (eQTL) analysis measures the contribution of genetic variation in gene expression on complex traits. Although this methodology has been used to examine gene regulation in numerous human tissues, eQTL research in solid tissues is relatively lacking. We conducted eQTL analysis on placentas collected from an East Asian population in an effort to identify gene regulatory mechanisms in this tissue. Placentas (n = 102) were collected at the time of cesarean delivery. mRNA was extracted, sequenced with NGS, and compared with matched maternal and fetal DNA arrays performed using maternal and neonatal cord blood. Linear regression modeling was performed using tensorQTL. Fine-mapping along with epigenomic annotation was used to select putative functional variants. We identified 2,703 coding genes that contained at least one eQTL with statistical significance (false discovery rate <0.05). After fine-mapping, we found 108 previously unreported eQTL variants with posterior inclusion probability >0.1. Of these, 19% were located in genomic regions with evidence from public placental epigenome suggesting that they may be functionally relevant. For example, variant rs28379289 located in the placenta-specific regulatory region changes the binding affinity of transcription factor leading to higher expression of LGALS3, which is known to affect placental function. This study expands the knowledge base of regulatory elements within the human placenta and identifies 108 previously unreported placenta eQTL signals, which are listed in our publicly available GMI eQTL database. Further studies are needed to identify and characterize genetic regulatory mechanisms that affect placental function in normal pregnancy and placenta-related diseases.


Subject(s)
East Asian People , Quantitative Trait Loci , Infant, Newborn , Humans , Female , Pregnancy , Quantitative Trait Loci/genetics , Polymorphism, Single Nucleotide/genetics , Genome-Wide Association Study , Placenta
2.
Hum Genomics ; 17(1): 96, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37898819

ABSTRACT

BACKGROUND: Fragmentomics, the investigation of fragmentation patterns of cell-free DNA (cfDNA), has emerged as a promising strategy for the early detection of multiple cancers in the field of liquid biopsy. However, the clinical application of this approach has been hindered by a limited understanding of cfDNA biology. Furthermore, the prevalence of hematopoietic cell-derived cfDNA in plasma complicates the in vivo investigation of tissue-specific cfDNA other than that of hematopoietic origin. While conventional two-dimensional cell lines have contributed to research on cfDNA biology, their limited representation of in vivo tissue contexts underscores the need for more robust models. In this study, we propose three-dimensional organoids as a novel in vitro model for studying cfDNA biology, focusing on multifaceted fragmentomic analyses. RESULTS: We established nine patient-derived organoid lines from normal lung airway, normal gastric, and gastric cancer tissues. We then extracted cfDNA from the culture medium of these organoids in both proliferative and apoptotic states. Using whole-genome sequencing data from cfDNA, we analyzed various fragmentomic features, including fragment size, footprints, end motifs, and repeat types at the end. The distribution of cfDNA fragment sizes in organoids, especially in apoptosis samples, was similar to that found in plasma, implying occupancy by mononucleosomes. The footprints determined by sequencing depth exhibited distinct patterns depending on fragment sizes, reflecting occupancy by a variety of DNA-binding proteins. Notably, we discovered that short fragments (< 118 bp) were exclusively enriched in the proliferative state and exhibited distinct fragmentomic profiles, characterized by 3 bp palindromic end motifs and specific repeats. CONCLUSIONS: In conclusion, our results highlight the utility of in vitro organoid models as a valuable tool for studying cfDNA biology and its associated fragmentation patterns. This, in turn, will pave the way for further enhancements in noninvasive cancer detection methodologies based on fragmentomics.


Subject(s)
Cell-Free Nucleic Acids , Neoplasms , Humans , Cell-Free Nucleic Acids/genetics , Neoplasms/genetics , Liquid Biopsy , Whole Genome Sequencing , Cell Line , Biomarkers, Tumor/genetics
3.
Exp Mol Med ; 55(8): 1831-1842, 2023 08.
Article in English | MEDLINE | ID: mdl-37582976

ABSTRACT

We present an in-depth single-cell atlas of in vitro multiculture systems on human primary airway epithelium derived from normal and diseased lungs of 27 individual donors. Our large-scale single-cell profiling identified new cell states and differentiation trajectories of rare airway epithelial cell types in human distal lungs. By integrating single-cell datasets of human lung tissues, we discovered immune-primed subsets enriched in lungs and organoids derived from patients with chronic respiratory disease. To demonstrate the full potential of our platform, we further illustrate transcriptomic responses to various respiratory virus infections in vitro airway models. Our work constitutes a single-cell roadmap for the cellular and molecular characteristics of human primary lung cells in vitro and their relevance to human tissues in vivo.


Subject(s)
Epithelial Cells , Lung , Humans , Epithelial Cells/metabolism , Epithelium , Cell Differentiation/physiology , Organoids
4.
Sci Adv ; 9(32): eadg6319, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37556544

ABSTRACT

Underrepresentation of non-European (EUR) populations hinders growth of global precision medicine. Resources such as imputation reference panels that match the study population are necessary to find low-frequency variants with substantial effects. We created a reference panel consisting of 14,393 whole-genome sequences including more than 11,000 Asian individuals. Genome-wide association studies were conducted using the reference panel and a population-specific genotype array of 72,298 subjects for eight phenotypes. This panel yields improved imputation accuracy of rare and low-frequency variants within East Asian populations compared with the largest reference panel. Thirty-nine previously unidentified associations were found, and more than half of the variants were East Asian specific. We discovered genes with rare protein-altering variants, including LTBP1 for height and GPR75 for body mass index, as well as putative regulatory mechanisms for rare noncoding variants with cell type-specific effects. We suggest that this dataset will add to the potential value of Asian precision medicine.


Subject(s)
East Asian People , Genome-Wide Association Study , Humans , Genome, Human , Polymorphism, Single Nucleotide , Genotype , Receptors, G-Protein-Coupled/genetics
5.
Genomics Inform ; 20(1): e2, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35399001

ABSTRACT

The method of single-cell RNA sequencing has been rapidly developed, and numerous experiments have been conducted over the past decade. Their results allow us to recognize various subpopulations and rare cell states in tissues, tumors, and immune systems that are previously unidentified, and guide us to understand fundamental biological processes that determine cell identity based on single-cell gene expression profiles. However, it is still challenging to understand the principle of comprehensive gene regulation that determines the cell fate only with transcriptome, a consequential output of the gene expression program. To elucidate the mechanisms related to the origin and maintenance of comprehensive single-cell transcriptome, we require a corresponding single-cell epigenome, which is a differentiated information of each cell with an identical genome. This review deals with the current development of single-cell epigenomic library construction methods, including multi-omics tools with crucial factors and additional requirements in the future focusing on DNA methylation, chromatin accessibility, and histone post-translational modifications. The study of cellular differentiation and the disease occurrence at a single-cell level has taken the first step with single-cell transcriptome and is now taking the next step with single-cell epigenome.

SELECTION OF CITATIONS
SEARCH DETAIL
...