Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
iScience ; 27(2): 108868, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38318360

ABSTRACT

Nox4-derived H2O2 generation plays an important role in the pathogenesis of chronic kidney diseases (CKDs) such as diabetic nephropathy (DN). Here, we showed that SH3 domain-containing Ysc84-like 1 (SH3YL1), a Nox4 cytosolic activator, regulated DN. Streptozotocin (STZ)-induced type Ⅰ diabetic models in SH3YL1 whole-body knockout (KO) mice and podocyte-specific SH3YL1 conditional KO (Nphs2-Cre/SH3YL1fl/fl) mice were established to investigate the function of SH3YL1 in DN. The expression of fibrosis markers and inflammatory cytokines, the generation of oxidative stress, and the loss of podocytes were suppressed in diabetic SH3YL1 KO and Nphs2-Cre/SH3YL1fl/fl mice, compared to diabetic control mice. To extrapolate the observations derived from diabetic mice to clinical implication, we measured the protein level of SH3YL1 in patients DN. In fact, the SH3YL1 level was increased in patients DN. Overall, the SH3YL1-Nox4 complex was identified to play an important role in renal inflammation and fibrosis, resulting in the development of DN.

2.
Kidney Res Clin Pract ; 43(1): 8-19, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38311359

ABSTRACT

In response to the increase in the prevalence of chronic kidney disease (CKD) in Korea, the growth of patients requiring renal replacement therapy and the subsequent increase in medical costs, the rapid expansion of patients with end-stage kidney disease (ESKD), and the decrease in patients receiving home therapy, including peritoneal dialysis, the Korean Society of Nephrology has proclaimed the new policy, Kidney Health Plan 2033 (KHP 2033). KHP 2033 would serve as a milestone to bridge the current issues to a future solution by directing the prevention and progression of CKD and ESKD, particularly diabetic kidney disease, and increasing the proportion of home therapy, thereby reducing the socioeconomic burden of kidney disease and improving the quality of life. Here, we provide the background for the necessity of KHP 2033, as well as the contents of KHP 2033, and enlighten the Korean Society of Nephrology's future goals. Together with patients, healthcare providers, academic societies, and national policymakers, we need to move forward with goal-oriented drive and leadership to achieve these goals.

3.
Kidney Blood Press Res ; 49(1): 81-90, 2024.
Article in English | MEDLINE | ID: mdl-38185119

ABSTRACT

INTRODUCTION: Sodium-glucose cotransporter 2 (SGLT2) inhibitors target SGLT2 in renal proximal tubules and promote glycosuria in type 2 diabetes mellitus in humans and animal models, resulting in reduced blood glucose levels. Although clinical trials have shown that SGLT2 inhibitors attenuate the progression of chronic kidney disease, there have been concerns regarding SGLT2-induced acute kidney injury. In this study, we investigated the effect of SGLT2 inhibitors on adriamycin-induced kidney injury in mice. METHODS: Seven-week-old balb/c mice were injected with adriamycin 11.5 mg/kg via the tail vein. Additionally, dapagliflozin was administered via gavage for 2 weeks. The mice were divided into five groups: vehicle, dapagliflozin 3 mg/kg, adriamycin, adriamycin plus dapagliflozin 1 mg/kg, and adriamycin plus dapagliflozin 3 mg/kg. RESULTS: Adriamycin injection reduced the body weight and food and water intakes. Dapagliflozin also decreased the body weight and food and water intakes. Fasting blood glucose and urine volume were not altered by either adriamycin or dapagliflozin. Once adriamycin-induced kidney injury had developed, there were no differences in systolic blood pressure among the groups. Dapagliflozin did not alleviate proteinuria in adriamycin-induced kidney injury. Adriamycin induced significant glomerular and interstitial injury, but dapagliflozin did not attenuate these changes in renal injury. Interestingly, SGLT2 expressions were different between the cortex and medulla of kidneys by dapagliflozin treatment. Dapagliflozin increased SGLT2 expression in medulla, not in cortex. CONCLUSION: Dapagliflozin had no effect on proteinuria or inflammatory changes such as glomerular and tubular damages in adriamycin-induced kidney injury. Our study suggests that dapagliflozin does not protect against adriamycin-induced kidney injury. More experimental studies regarding the effects of SGLT2 inhibitors on various kidney diseases are needed to clarify the underlying mechanisms.


Subject(s)
Diabetes Mellitus, Type 2 , Glucosides , Renal Insufficiency, Chronic , Sodium-Glucose Transporter 2 Inhibitors , Humans , Mice , Animals , Sodium-Glucose Transporter 2/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Doxorubicin , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/drug therapy , Kidney/metabolism , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , Renal Insufficiency, Chronic/metabolism , Proteinuria/drug therapy , Body Weight , Water/metabolism
4.
Anim Cells Syst (Seoul) ; 27(1): 187-196, 2023.
Article in English | MEDLINE | ID: mdl-37789932

ABSTRACT

The spexin-based GALR2 agonist (NS200) is a novel drug, which has shown antidepressant and anxiolytic action in a recent experimental study. In this study, we investigated the effects of NS200 on renal injury in an animal model of type 2 diabetes. Eight-week-old diabetic db/db mice were administered NS200 for 12 weeks. NS200 was intraperitoneally administered at a dose of 1.0 mg/kg/day. Metabolic parameters and structural and molecular changes in the kidneys were compared among the three groups: non-diabetic db/m control, db/db mice, and NS200-treated db/db mice. In db/db mice, NS200 administration did not impact the body weight, food and water intake, urinary volume, fasting blood glucose level, or HbA1c levels. Insulin and glucose tolerance were also unaffected by NS200 treatment. However, NS200 improved urinary albumin excretion and glomerulosclerosis in diabetic kidneys. Activation of TGFß1 and insulin signaling pathways, such as PI3 K /AKT/ERK, were inhibited by NS200. In conclusion, a spexin-based GALR2 agonist attenuated diabetic nephropathy by alleviating renal fibrosis in mice with type 2 diabetes. Spexin-based GALR2 agonists have considerable potential as novel treatment agents in diabetic nephropathy.

5.
Article in English | MEDLINE | ID: mdl-37559225

ABSTRACT

Background: Aging is a risk factor for development of chronic kidney disease and diabetes mellitus with commonly shared features of chronic inflammation and increased oxidative stress. Here, we investigated the effect of pan-Nox-inhibitor, APX-115, on renal function in aging diabetic mice. Methods: Diabetes was induced by intraperitoneal injection of streptozotocin at 50 mg/kg/day for 5 days in 52-week-old C57BL/6J mice. APX-115 was administered by oral gavage at a dose of 60 mg/kg/day for 12 weeks in nondiabetic and diabetic aging mice. Results: APX-115 significantly improved insulin resistance in diabetic aging mice. Urinary level of 8-isoprostane was significantly increased in diabetic aging mice than nondiabetic aging mice, and APX-115 treatment reduced 8-isoprostane level. Urinary albumin and nephrin excretion were significantly higher in diabetic aging mice than nondiabetic aging mice. Although APX-115 did not significantly decrease albuminuria, APX-115 markedly improved mesangial expansion, macrophage infiltration, and expression of fibrosis molecules such as transforming growth factor beta 1 and plasminogen activator inhibitor 1. Interestingly, the expression of all Nox isoforms including Nox1, Nox2, and Nox4 was significantly increased in diabetic aging kidneys, and APX-115 treatment decreased Nox1, Nox2, and Nox4 protein expression in the kidney. Furthermore, Klotho expression was significantly decreased in diabetic aging kidneys, and APX-115 restored Klotho level. Conclusion: Our results provide evidence that pan-Nox inhibition may improve systemic insulin resistance and decrease oxidative stress, inflammation, and fibrosis in aging diabetic status and may have potential protective effects on aging diabetic kidney.

6.
Anim Cells Syst (Seoul) ; 27(1): 112-119, 2023.
Article in English | MEDLINE | ID: mdl-37089626

ABSTRACT

Puromycin treatment can cause glomerular injury to the kidney, leading to proteinuria. However, the pathogenesis of acute kidney injury and subsequent regeneration after puromycin administration in animal models remain unclear. In this work, we examined the characteristics of kidney injury and subsequent regeneration following puromycin treatment in adult zebrafish. We intraperitoneally injected 100 µg of puromycin into zebrafish; sacrificed them at 1, 3, 5, 7, or 14 days post-injection (dpi); and examined the morphological, functional, and molecular changes in the kidney. Puromycin-treated zebrafish presented more rapid clearance of rhodamine dextran than control animals. Morphological changes were observed immediately after the puromycin injection (1-7 dpi) and had recovered by 14 dpi. The mRNA production of lhx1a, a renal progenitor marker, increased during recovery from kidney injury. Levels of NFκB, TNFα, Nampt, and p-ERK increased significantly during nephron injury and regeneration, and Sirt1, FOXO1, pax2, and wt1b showed an increasing tendency. However, TGF-ß1 and smad5 production did not show any changes after puromycin treatment. This study provides evidence that puromycin-induced injury in adult zebrafish kidneys is a potential tool for evaluating the mechanism of nephron injury and subsequent regeneration.

7.
Life (Basel) ; 13(4)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37109492

ABSTRACT

NADPH oxidase (NOX)-derived oxidative stress is an important factor in renal progression, with NOX4 being the predominant NOX in the kidney. Recently, Src homology 3 (SH3) domain-containing YSC84-like 1 (SH3YL1) was reported to be a regulator of NOX4. In this study, we tested whether the SH3YL1 protein could predict 3-year renal outcomes in patients with type 2 diabetes. A total of 131 patients with type 2 diabetes were enrolled in this study. Renal events were defined as a 15% decline in the estimated glomerular filtration rate (eGFR) from the baseline, the initiation of renal replacement therapy, or death during the 3 years. The levels of the urinary SH3YL1-to-creatinine ratio (USCR) were significantly different among the five stages of chronic kidney disease (CKD) and the three groups, based on albuminuria levels. The USCR levels showed a significant negative correlation with eGFR and a positive correlation with the urinary albumin-to-creatinine ratio (UACR). Plasma SH3YL1 levels were significantly correlated with UACR. The highest tertile group of USCR and plasma SH3YL1 had a significantly lower probability of renal event-free survival. Furthermore, the highest tertile group of USCR showed a significant association with the incidence of renal events after full adjustment: adjusted hazard ratio (4.636: 95% confidence interval, 1.416-15.181, p = 0.011). This study suggests that SH3YL1 is a new diagnostic biomarker for renal outcomes in patients with type 2 diabetes.

8.
Life (Basel) ; 13(2)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36836636

ABSTRACT

V-set Ig domain-containing 4 (VSIG4) regulates an inflammatory response and is involved in various diseases. However, the role of VSIG4 in kidney diseases is still unclear. Here, we investigated VSIG4 expression in unilateral ureteral obstruction (UUO), doxorubicin-induced kidney injury mouse, and doxorubicin-induced podocyte injury models. The levels of urinary VSIG4 protein significantly increased in the UUO mice compared with that in the control. The expression of VSIG4 mRNA and protein in the UUO mice was significantly upregulated compared with that in the control. In the doxorubicin-induced kidney injury model, the levels of urinary albumin and VSIG4 for 24 h were significantly higher than those in the control mice. Notably, a significant correlation was observed between urinary levels of VSIG4 and albumin (r = 0.912, p < 0.001). Intrarenal VSIG4 mRNA and protein expression were also significantly higher in the doxorubicin-induced mice than in the control. In cultured podocytes, VSIG4 mRNA and protein expressions were significantly higher in the doxorubicin-treated groups (1.0 and 3.0 µg/mL) than in the controls at 12 and 24 h. In conclusion, VSIG4 expression was upregulated in the UUO and doxorubicin-induced kidney injury models. VSIG4 may be involved in pathogenesis and disease progression in chronic kidney disease models.

9.
Gerontology ; 69(7): 852-865, 2023.
Article in English | MEDLINE | ID: mdl-36709751

ABSTRACT

INTRODUCTION: Aging of the kidney is associated with complex molecular, histological, and functional changes. Although the aging process itself does not induce renal damage, underlying disease such as diabetes mellitus can aggravate kidney injury during aging. Although oxidative stress is considered an important mediator in age-related renal fibrosis, it is unclear how oxidative stress increases during normal and diabetic aging. METHODS: In this study, we investigated molecular changes in the kidney in normal and diabetic aging mice. C57BL/6 mice were studied at 2, 12, and 24 months of age, and leptin receptor-deficient db/db mice were studied at 8, 12, 16, 20, 24, and 38 weeks of age. We measured renal functional parameters, fibrotic and inflammatory markers, and oxidative stress markers at all the above time points. RESULTS: Both nondiabetic and diabetic mice exhibited progressive microalbuminuria during their lifespan. Interestingly, both diabetic aging and normal aging mice showed progressive increases in oxidative stress markers such as plasma and urinary 8-isoprostane, as well as renal lipid hydroperoxide content. In renal tissues, proinflammatory and profibrotic molecules were significantly upregulated in an age-dependent manner. Expression of three NADPH oxidase (Nox) isoforms, namely, Nox1, Nox2, and Nox4, was significantly increased during aging. Compared with normal aging mice, diabetic db/db mice demonstrated more dramatic changes during aging process. CONCLUSIONS: Our findings suggest that NADPH oxidases play an important role in the aging kidney under both normal and diabetic conditions. Targeting of these oxidases might be a new promising therapy to treat issues associated with aging kidneys.


Subject(s)
Diabetes Mellitus, Experimental , NADPH Oxidases , Mice , Animals , NADPH Oxidases/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Mice, Inbred C57BL , Kidney/pathology , Oxidative Stress , Aging , Reactive Oxygen Species/metabolism
10.
Kidney Res Clin Pract ; 41(Suppl 2): S31-S32, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36239060
11.
Kidney Res Clin Pract ; 41(Suppl 2): S74-S88, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36239063

ABSTRACT

Diabetic kidney disease (DKD) is now a pandemic worldwide, and novel therapeutic options are urgently required. Adenosine, an adenosine triphosphate metabolite, plays a role in kidney homeostasis through interacting with four types of adenosine receptors (ARs): A1AR, A2AAR, A2BAR, and A3AR. Increasing evidence highlights the role of adenosine and ARs in the development and progression of DKD: 1) increased adenosine in the plasma and urine of diabetics with kidney injury, 2) increased expression of each of the ARs in diabetic kidneys, 3) the protective effect of coffee, a commonly ingested nonselective AR antagonist, on DKD, and 4) the protective effect of AR modulators in experimental DKD models. We propose AR modulators as a new therapeutic option to treat DKD. Detailed mechanistic studies on the pharmacology of AR modulators will help us to develop effective first-in-class AR modulators against DKD.

12.
Life (Basel) ; 12(7)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35888119

ABSTRACT

Fibrosis is the final common finding in patients with advanced diabetic kidney disease. V-set Ig domain containing 4 (VSIG4) is related to fibrosis in several diseases. It also contributes to fibrosis under high-glucose conditions in renal tubule cells. To determine the role of VSIG4 in type 2 diabetes, we examined VSIG4 expression in a type 2 diabetic animal model and podocyte. Urinary excretion of albumin and VSIG4 was significantly higher in db/db mice than in the control group. Urine VSIGs levels for 6 h were about three-fold higher in db/db mice than in db/m mice at 20 weeks of age: 55.2 ± 37.8 vs. 153.1 ± 74.3 ng, p = 0.04. Furthermore, urinary VSIG4 levels were significantly correlated with urinary albumin levels (r = 0.77, p < 0.01). Intrarenal VSIG4 mRNA expression was significantly higher in db/db mice than in control mice (1.00 ± 0.35 vs. 1.69 ± 0.77, p = 0.04). Further, VSIG4 expression was almost twice as high in db/db mice at 20 weeks of age. Intrarenal VSIG immunoreactivity in db/db mice was also significantly higher than that in control mice. In cultured podocytes, both high glucose and angiotensin II significantly upregulated the expression of VSIG4 mRNA and protein. In conclusion, VSIG4 was upregulated in an animal model of type 2 diabetes and was related to albuminuria and pro-fibrotic markers. Considering these relationships, VSIG4 may be an important mediator of diabetic nephropathy progression.

13.
Transl Res ; 249: 88-109, 2022 11.
Article in English | MEDLINE | ID: mdl-35788054

ABSTRACT

During the progression of diabetic kidney disease (DKD), renal lactate metabolism is rewired. The relationship between alterations in renal lactate metabolism and renal fibrosis in patients with diabetes has only been partially established due to a lack of biopsy tissues from patients with DKD and the intricate mechanism of lactate homeostasis. The role of lactate dehydrogenase A (LDHA)-mediated lactate generation in renal fibrosis and dysfunction in human and animal models of DKD was explored in this study. Measures of lactate metabolism (urinary lactate levels and LDHA expression) and measures of DKD progression (estimated glomerular filtration rate and Wilms' tumor-1 expression) were strongly negatively correlated in patients with DKD. Experiments with streptozotocin-induced DKD rat models and the rat renal mesangial cell model confirmed our findings. We found that the pathogenesis of DKD is linked to hypoxia-mediated lactic acidosis, which leads to fibrosis and mitochondrial abnormalities. The pathogenic characteristics of DKD were significantly reduced when aerobic glycolysis or LDHA expression was inhibited. Further studies will aim to investigate whether local acidosis caused by renal LDHA might be exploited as a therapeutic target in patients with DKD.


Subject(s)
Acidosis , Diabetes Mellitus , Diabetic Nephropathies , Acidosis/complications , Animals , Diabetic Nephropathies/metabolism , Fibrosis , Humans , Lactate Dehydrogenase 5 , Lactates/therapeutic use , Rats , Streptozocin/therapeutic use , WT1 Proteins/therapeutic use
14.
Electrolyte Blood Press ; 20(2): 39-48, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36688208

ABSTRACT

Diabetic kidney disease (DKD) is the most common cause of end-stage kidney disease. Blood pressure (BP) control can reduce the risks of cardiovascular (CV) morbidity, mortality, and kidney disease progression. Recently, the Kidney Disease: Improving Global Outcomes (KDIGO) guidelines have suggested the implementation of a more intensive BP control with a target systolic BP (SBP) of <120 mmHg based on the evidence that the CV benefits obtained is outweighed by the kidney injury risk associated with a lower BP target. However, an extremely low BP level may paradoxically aggravate renal function and CV outcomes. Herein, we aimed to review the existing literature regarding optimal BP control using medications for DKD.

15.
Sci Rep ; 11(1): 23639, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880338

ABSTRACT

Obstructive uropathy is known to be associated with acute kidney injury (AKI). This study aimed to investigate the etiologies, clinical characteristics, consequences and also assess the impact of AKI on long-term outcomes. This multicenter, retrospective study of 1683 patients with obstructive uropathy who underwent percutaneous nephrostomy (PCN) analyzed clinical characteristics, outcomes including progression to end-stage kidney disease (ESKD), overall mortality, and the impact of AKI on long-term outcomes. Obstructive uropathy in adults was most commonly caused by malignancy, urolithiasis, and other causes. AKI was present in 78% of the patients and was independently associated with preexisting chronic kidney disease (CKD). Short-term recovery was achieved in 56.78% after the relief of obstruction. ESKD progression rate was 4.4% in urolithiasis and 6.8% in other causes and older age, preexisting CKD, and stage 3 AKI were independent factors of progression. The mortality rate (34%) was highly attributed to malignant obstruction (52%) stage 3 AKI was also an independent predictor of mortality in non-malignant obstruction. AKI is a frequent complication of adult obstructive uropathy. AKI negatively affects long-term kidney outcomes and survival in non-malignant obstructions. A better understanding of the epidemiology and prognostic factors is needed for adult obstructive uropathy.


Subject(s)
Acute Kidney Injury/physiopathology , Kidney Failure, Chronic/etiology , Acute Kidney Injury/complications , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors
16.
Life (Basel) ; 11(3)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803842

ABSTRACT

Cyclosporine A (CyA) is an immunosuppressive agent that induces nephrotoxicity with long-term treatment. The roles of DPP-4 and its inhibitors in cyclosporine nephrotoxicity are not fully understood. Therefore, we investigated the effects of a novel DPP-4 inhibitor, DA-1229, on the progression of renal disease in an experimental cyclosporine nephrotoxicity model. Chronic cyclosporine nephrotoxicity was induced in six-week-old male ICR mice by subcutaneous injections of CyA at a dose of 30 mg/kg for four weeks. Animals were treated with DA-1229 at a dose of 300 mg/kg per day in food for four weeks. Although DPP-4 activity did not increase in the kidneys of mice with induced cyclosporine nephrotoxicity, DA-1229 treatment significantly suppressed DPP-4 activity in both plasma and renal tissues. DPP-4 inhibition by DA-1229 led to significantly decreased albuminuria and urinary excretion of 8-isoprosatane. DPP-4 inhibition also substantially suppressed pro-inflammatory effects, profibrotic molecules, and macrophage infiltration, and led to the improvement in renal structural changes. Our results suggest that DPP-4 inhibition by DA-1229 provides renoprotective effects in an animal model of cyclosporine nephrotoxicity via antioxidant, anti-inflammatory, and anti-fibrotic mechanisms. DPP-4 inhibition may be a useful new therapeutic approach for the management of progressive renal disease in cyclosporine nephrotoxicity.

17.
Kidney Res Clin Pract ; 40(1): 69-76, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33706478

ABSTRACT

BACKGROUND: Imbalance of T helper (Th) 1/2 cells has been shown to contribute to the development of immunoglobulin A nephropathy (IgAN). To address the inconsistent results on the role of Th1/Th2 polarization, we evaluated the levels of Th1/Th2 cytokines in various samples from patients with IgAN. METHODS: Thirty-one patients with biopsy-proven IgAN (age, 34.48 ± 12.10 years) and 25 healthy controls (age, 44.84 ± 13.72 years) were enrolled. We evaluated the relationship between the levels of Th1/Th2 cytokines and the response to glucocorticoid treatment. RESULTS: The levels of serum interferon-gamma (IFNγ) and urinary monocyte chemoattractant peptide (MCP)-1 were higher in the IgAN group than in the control group. The levels of MCP-1 in urine and secreted by peripheral blood mononuclear cells (PBMCs) were significantly different among three groups categorized based on daily proteinuria. The level of urinary MCP-1 was significantly correlated with proteinuria. The levels of urinary MCP-1, serum interleukin (IL)-4, IFNγ, and IL-2 secreted by PBMCs and intrarenal IL-1 messenger RNA (mRNA) were significantly correlated with the ratio of proteinuria at 6 months to baseline proteinuria in patients undergoing glucocorticoid treatment. MCP-1 mRNA and protein levels were significantly upregulated in mesangial cells stimulated with IFNγ among representative Th1/Th2 cytokines. CONCLUSION: IFNγ was shown to be a key cytokine in the pathogenic processes underlying IgAN, and its upregulation induced an increase in urinary MCP-1 production. These findings suggest that Th1 cytokines may play an important role in the development of IgAN.

18.
Acta Diabetol ; 58(4): 495-503, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33399988

ABSTRACT

BACKGROUND: Farnesoid X receptor (FXR) plays a role in homeostasis of bile acid, lipid, and carbohydrate metabolism. However, the systemic effects of FXR in diabetic nephropathy are controversial. We aimed to clarify the systemic effects of FXR on various organs in a type 2 diabetic animal model. METHODS: We treated db/db mice with the FXR agonist GW4064 for 3 months and evaluated insulin resistance, lipid metabolism, renal functional changes, and structural changes in organs including those of the kidney, liver, pancreas, adipose tissue, aorta, and heart. RESULTS: The FXR agonist significantly improved plasma lipid profiles and insulin resistance and showed beneficial systemic effects on several organs. In the kidney, the FXR agonist ameliorated albuminuria, pro-fibrotic and pro-inflammatory changes and improved renal lipid metabolism. These changes were also associated with a decrease in lipid hydroperoxide in the kidney. Similar beneficial effects were shown in other organs, including restoration of pancreatic beta cell hypertrophy, hepatic steatosis and aortic medial hypertrophy, more differentiated phenotypic changes in adipose tissue, and improvement of cardiomyocyte disarray and left ventricular mass index. CONCLUSIONS: The FXR agonist improves insulin resistance, renal lipid metabolism, and functional and structural changes in the kidney and other organs.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/drug therapy , Insulin Resistance , Isoxazoles/pharmacology , Lipid Metabolism/drug effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Albuminuria/drug therapy , Albuminuria/metabolism , Albuminuria/physiopathology , Animals , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Kidney/drug effects , Kidney/metabolism , Kidney/physiopathology , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Receptors, Cytoplasmic and Nuclear/agonists
19.
Life (Basel) ; 10(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348749

ABSTRACT

High glucose-mediated tubular injury contributes to the development and progression of diabetic nephropathy through renal tubulointerstitial fibrosis. V-set immunoglobulin-domain-containing 4 (VSIG4), a B7 family-related protein, is a complement receptor. Although the role of epithelial-mesenchymal transition (EMT) has been reported in several diseases, little is known about its relationship with VSIG4 under diabetic conditions. This study aimed to investigate the role of VSIG4 in human tubule cells stimulated by high glucose (HG, 55 mM). HG upregulated both mRNA and protein levels of VSIG4 in proximal tubule cells (HK-2 cells) and Madin Darby Canine Kidney cells. These upregulations were accompanied by increased expression of mesenchymal markers such as fibronectin, N-cadherin, matrix metalloproteinase 9, and vimentin, and by decreased expression of the epithelial marker, E-cadherin. The siRNA-mediated inhibition of VSIG4 in HK-2 cells restored the dysregulation of EMT in cells. Interestingly, VSIG4 inhibition did not affect the expression of transforming growth factor (TGF)-ß, whereas inhibition of TGF-ß reduced VSIG4 expression, subsequently suppressing fibrosis markers. These findings suggest that VSIG4 plays an important role in mediating renal tubular EMT through the downstream action of HG-induced TGF-ß activation.

20.
Biomedicines ; 8(10)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086608

ABSTRACT

Interstitial fibrosis is a common feature of chronic kidney disease, and platelet-derived growth factor receptor-ß (PDGFR-ß)-positive mesenchymal cells are reportedly the major source of scar-producing myofibroblasts. We had previously demonstrated that albumin and its derivative R-III (a retinol-binding protein-albumin domain III fusion protein) inhibited the transdifferentiation/activation of hepatic stellate cells (HSCs) to myofibroblasts and that R-III administration reduced liver fibrosis. In this study, we isolated cells (referred to as renal stellate cells, RSCs) from rat kidney tissues using the HSC isolation protocol and compared their morphological and biochemical characteristics with those of HSCs. RSCs shared many characteristics with HSCs, such as storage of vitamin A-containing lipid droplets and expression of HSC markers as well as pericyte markers. RSCs underwent spontaneous transdifferentiation into myofibroblasts in in vitro culture, which was inhibited by albumin expression or R-III treatment. We also evaluated the therapeutic effects of R-III in unilateral ureteral obstruction (UUO)-induced renal fibrosis in mice. Injected R-III localized predominantly in cytoglobin/stellate cell activation-associated protein (Cygb/STAP)-positive cells in the kidney and reduced renal fibrosis. These findings suggest that RSCs can be recognized as the renal counterparts of HSCs and that RSCs represent an attractive therapeutic target for anti-fibrotic therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...