Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 4902, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580321

ABSTRACT

Seventy percent of global electricity is generated by steam-cycle power plants. A hydrophobic condenser surface within these plants could boost overall cycle efficiency by 2%. In 2022, this enhancement equates to an additional electrical power generation of 1000 TWh annually, or 83% of the global solar electricity production. Furthermore, this efficiency increase reduces CO2 emissions by 460 million tons /year with a decreased use of 2 trillion gallons of cooling water per year. However, the main challenge with hydrophobic surfaces is their poor durability. Here, we show that solid microscale-thick fluorinated diamond-like carbon (F-DLC) possesses mechanical and thermal properties that ensure durability in moist, abrasive, and thermally harsh conditions. The F-DLC coating achieves this without relying on atmospheric interactions, infused lubricants, self-healing strategies, or sacrificial surface designs. Through tailored substrate adhesion and multilayer deposition, we develop a pinhole-free F-DLC coating with low surface energy and comparable Young's modulus to metals. In a three-year steam condensation experiment, the F-DLC coating maintains hydrophobicity, resulting in sustained and improved dropwise condensation on multiple metallic substrates. Our findings provide a promising solution to hydrophobic material fragility and can enhance the sustainability of renewable and non-renewable energy sources.

2.
Nano Lett ; 23(5): 1888-1896, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36802577

ABSTRACT

Colloidal self-assembly has attracted significant interest in numerous applications including optics, electrochemistry, thermofluidics, and biomolecule templating. To meet the requirements of these applications, numerous fabrication methods have been developed. However, these are limited to narrow ranges of feature sizes, are incompatible with many substrates, and/or have low scalability, significantly limiting the use of colloidal self-assembly. In this work, we study the capillary transfer of colloidal crystals and demonstrate that this approach overcomes these limitations. Enabled by capillary transfer, we fabricate 2D colloidal crystals with nano-to-micro feature sizes spanning 2 orders of magnitude and on typically challenging substrates including those that are hydrophobic, rough, curved, or structured with microchannels. We developed and systemically validated a capillary peeling model, elucidating the underlying transfer physics. Due to its high versatility, good quality, and simplicity, this approach can expand the possibilities of colloidal self-assembly and enhance the performance of applications using colloidal crystals.

3.
Adv Mater ; 34(32): e2200899, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35725240

ABSTRACT

Boiling is an effective energy-transfer process with substantial utility in energy applications. Boiling performance is described mainly by the heat-transfer coefficient (HTC) and critical heat flux (CHF). Recent efforts for the simultaneous enhancement of HTC and CHF have been limited by an intrinsic trade-off between them-HTC enhancement requires high nucleation-site density, which can increase bubble coalescence resulting in limited CHF enhancement. In this work, this trade-off is overcome by designing three-tier hierarchical structures. The bubble coalescence is minimized to enhance the CHF by defining nucleation sites with microcavities interspersed within hemi-wicking structures. Meanwhile, the reduced nucleation-site density is compensated for by incorporating nanostructures that promote evaporation for HTC enhancement. The hierarchical structures demonstrate the simultaneous enhancement of HTC and CHF up to 389% and 138%, respectively, compared to a smooth surface. This extreme boiling performance can lead to significant energy savings in a variety of boiling applications.

4.
ACS Appl Mater Interfaces ; 14(7): 9788-9794, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35143158

ABSTRACT

Surface engineering has been leveraged by researchers to enhance boiling heat transfer performance, with benefits ranging from improved thermal management to more efficient power generation. While engineered surfaces fabricated using cleanroom processes have shown promising boiling results, scalable methods for surface engineering are still limited despite most real-world industry-scale applications involving large boiling areas. In this work, we investigate the use of sandblasting as a scalable surface engineering technique for the enhancement of pool boiling heat transfer. We vary the size of an abrasive Al2O3 sandblasting medium (25, 50, 100, and 150 µm) and quantify its effects on silicon surface conditions and boiling characteristics. The surface morphology and capillary wicking performance are characterized by optical profilometry and capillary rise tests, respectively. Pool boiling results and surface characterization reveal that surface roughness and volumetric wicking rate increase with the abrasive size, which results in improvements in the critical heat flux and the heat transfer coefficient of up to 192.6 and 434.3% compared to a smooth silicon surface, respectively. The significant enhancement achieved with sandblasted surfaces indicates that sandblasting is a promising option for improving boiling performance in industry-scale applications.

5.
iScience ; 25(1): 103691, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35036875

ABSTRACT

The surface free energy of rare earth oxides (REOs) has been debated during the last decade, with some reporting REOs to be intrinsically hydrophilic and others reporting hydrophobic. Here, we investigate the wettability and surface chemistry of pristine and smooth REO surfaces, conclusively showing that hydrophobicity stems from wettability transition due to volatile organic compound adsorption. We show that, for indoor ambient atmospheres and well-controlled saturated hydrocarbon atmospheres, the apparent advancing and receding contact angles of water increase with exposure time. We examined the surfaces comprehensively with multiple surface analysis techniques to confirm hydrocarbon adsorption and correlate it to wettability transition mechanisms. We demonstrate that both physisorption and chemisorption occur on the surface, with chemisorbed hydrocarbons promoting further physisorption due to their high affinity with similar hydrocarbon molecules. This study offers a better understanding of the intrinsic wettability of REOs and provides design guidelines for REO-based durable hydrophobic coatings.

6.
ACS Appl Mater Interfaces ; 13(19): 23121-23133, 2021 May 19.
Article in English | MEDLINE | ID: mdl-33949848

ABSTRACT

Lubricant-infused surfaces (LISs) and slippery liquid-infused porous surfaces (SLIPSs) have shown remarkable success in repelling low-surface-tension fluids. The atomically smooth, defect-free slippery surface leads to reduced droplet pinning and omniphobicity. However, the presence of a lubricant introduces liquid-liquid interactions with the working fluid. The commonly utilized lubricants for LISs and SLIPSs, although immiscible with water, show various degrees of miscibility with organic polar and nonpolar working fluids. Here, we rigorously investigate the extent of miscibility by considering a wide range of liquid-vapor surface tensions (12-73 mN/m) and different categories of lubricants having a range of viscosities (5-2700 cSt). Using high-fidelity analytical chemistry techniques including X-ray photoelectron spectroscopy, nuclear magnetic resonance, thermogravimetric analysis, and two-dimensional gas chromatography, we quantify lubricant miscibility to parts per billion accuracy. Furthermore, we quantify lubricant concentrations in the collected condensate obtained from prolonged condensation experiments with ethanol and hexane to delineate mixing and shear-based lubricant drainage mechanisms and to predict the lifetime of LISs and SLIPSs. Our work not only elucidates the effect of lubricant properties on miscibility with various fluids but also develops guidelines for developing stable and robust LISs and SLIPSs.

7.
ACS Nano ; 14(10): 13367-13379, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33064463

ABSTRACT

Condensation is a universal phenomenon that occurs in nature and industry. Previous studies have used superhydrophobicity and liquid infusion to enable superior liquid repellency due to reduced contact angle hysteresis. However, small condensate droplets remain immobile on condensing surfaces until they grow to the departing size at which the body force can overcome the contact line pinning force. Hence, condensation heat transfer is limited by these remaining droplets that act as thermal barriers. To break these limitations, we introduce vibrational actuation to a slippery liquid-infused nanoporous surface (SLIPS) and show enhanced droplet mobility, controllable condensate repellency, and more efficient heat transfer compared to static SLIPSs. We demonstrate 39% smaller departing droplet size and 8× faster droplet departing speeds on the dynamic vibrating SLIPS compared to the nonactuated SLIPS. To understand the implications of these behaviors on heat transfer, we investigate the condensate area coverage and droplet distribution to verify enhanced dewetting on dynamic vibrating SLIPSs. Using well-validated heat transfer models, we demonstrate enhanced condensation heat transfer on dynamic SLIPSs due to the higher population of smaller condensate droplets (<100 µm). In addition to condensation heat transfer, we also show that vibrating SLIPSs can enhance droplet collection. This work utilizes the synergistic combination of surface chemistry and mechanical actuation to realize enhanced droplet mobility and heat transfer in an electrically controllable and switchable manner.

8.
Sci Adv ; 6(42)2020 10.
Article in English | MEDLINE | ID: mdl-33067233

ABSTRACT

"Living" cell sheets or bioelectronic chips have great potentials to improve the quality of diagnostics and therapies. However, handling these thin and delicate materials remains a grand challenge because the external force applied for gripping and releasing can easily deform or damage the materials. This study presents a soft manipulator that can manipulate and transport cell/tissue sheets and ultrathin wearable biosensing devices seamlessly by recapitulating how a cephalopod's suction cup works. The soft manipulator consists of an ultrafast thermo-responsive, microchanneled hydrogel layer with tissue-like softness and an electric heater layer. The electric current to the manipulator drives microchannels of the gel to shrink/expand and results in a pressure change through the microchannels. The manipulator can lift/detach an object within 10 s and can be used repeatedly over 50 times. This soft manipulator would be highly useful for safe and reliable assembly and implantation of therapeutic cell/tissue sheets and biosensing devices.

9.
Langmuir ; 36(32): 9510-9522, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32689802

ABSTRACT

Coalescence-induced droplet jumping has the potential to enhance the performance of a variety of applications including condensation heat transfer, surface self-cleaning, anti-icing, and defrosting to name a few. Here, we study droplet jumping on hierarchical microgrooved and nanostructured smooth superhydrophobic surfaces. We show that the confined microgroove structures play a key role in tailoring droplet coalescence hydrodynamics, which in turn affects the droplet jumping velocity and energy conversion efficiency. We observed self-jumping of individual deformed droplets within microgrooves having maximum surface-to-kinetic energy conversion efficiency of 8%. Furthermore, various coalescence-induced jumping modes were observed on the hierarchical microgrooved superhydrophobic surface. The microgroove structure enabled high droplet jumping velocity (≈0.74U) and energy conversion efficiency (≈46%) by enabling the coalescence of deformed droplets in microgrooves with undeformed droplets on adjacent plateaus. The jumping velocity and energy conversion efficiency enhancements are 1.93× and 6.67× higher than traditional coalescence-induced droplet jumping on smooth superhydrophobic surfaces. This work not only demonstrates high droplet jumping velocity and energy conversion efficiency but also demonstrates the key role played by macroscale structures on coalescence hydrodynamics and elucidates a method to further control droplet jumping physics for a plethora of applications.

10.
Langmuir ; 36(21): 5730-5744, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32370513

ABSTRACT

Hydrophobic-hydrophilic hybrid surfaces, sometimes termed biphilic surfaces, have shown potential to enhance condensation and boiling heat transfer, anti-icing, and fog harvesting performance. However, state of art techniques to develop these surfaces have limited substrate selection, poor scalability, and lengthy and costly fabrication methods. Here, we develop a simple, scalable, and rapid stamping technique for hybrid surfaces with spatially controlled wettability. To enable stamping, rationally designed and prefabricated polydimethylsiloxane (PDMS) stamps, which are reusable and independent of the substrate and functional coating, were used. To demonstrate the stamping technique, we used silicon wafer, copper, and aluminum substrates functionalized with a variety of hydrophobic chemistries including heptadecafluorodecyltrimethoxy-silane, octafluorocyclobutane, and slippery omniphobic covalently attached liquids. Condensation experiments and microgoniometric characterization demonstrated that the stamped surfaces have global hydrophobicity or superhydrophobicity with localized hydrophilicity (spots) enabled by local removal of the functional coating during stamping. Stamped surfaces with superhydrophobic backgrounds and hydrophilic spots demonstrated stable coalescence induced droplet jumping. Compared to conventional techniques, our stamping method has comparable prototyping cost with reduced manufacturing time scale and cost. Our work not only presents design guidelines for the development of scalable hybrid surfaces for the study of phase change phenomena, it develops a scalable and rapid stamping protocol for the cost-effective manufacture of next-generation hybrid wettability surfaces.

11.
Sci Adv ; 6(2): eaax0746, 2020 01.
Article in English | MEDLINE | ID: mdl-31950076

ABSTRACT

Droplet nucleation and condensation are ubiquitous phenomena in nature and industry. Over the past century, research has shown dropwise condensation heat transfer on nonwetting surfaces to be an order of magnitude higher than filmwise condensation heat transfer on wetting substrates. However, the necessity for nonwetting to achieve dropwise condensation is unclear. This article reports stable dropwise condensation on a smooth, solid, hydrophilic surface (θa = 38°) having low contact angle hysteresis (<3°). We show that the distribution of nano- to micro- to macroscale droplet sizes (about 100 nm to 1 mm) for coalescing droplets agrees well with the classical distribution on hydrophobic surfaces and elucidate that the wettability-governed dropwise-to-filmwise transition is mediated by the departing droplet Bond number. Our findings demonstrate that achieving stable dropwise condensation is not governed by surface intrinsic wettability, as assumed for the past eight decades, but rather, it is dictated by contact angle hysteresis.

12.
ACS Nano ; 13(11): 13343-13353, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31596565

ABSTRACT

Solid-liquid interactions are ubiquitous phenomena in nature and industry. Wettability of a liquid on a solid is governed by the chemical heterogeneity and physical roughness of the solid surface and can be characterized by measuring the advancing and receding contact angles of the liquid droplet residing on the solid. To characterize contact angle, goniometry and the Wilhelmy plate method have been widely used. Although powerful, these methods have difficulty characterizing microdroplets, can be cumbersome and expensive, and have trouble handling surfaces with local wetting heterogeneity and deformed noncircular contact lines. Furthermore, past methods are incapable of measuring contact angle in situ during experiments (e.g., condensation). Here, we develop simple yet powerful contact angle measurement techniques using conventional optical microscopy that utilizes focal plane shift imaging, ray optics, and wave interference. We used our techniques to study the wetting characteristics for a wide range of water droplet diameters (10 µm < D < 600 µm) and apparent contact angles (0° ≤ θapp ≤ 180°). The outcomes of this work establish a powerful tool to more easily and rapidly characterize microscale droplet advancing and receding contact angles.

13.
ACS Nano ; 13(4): 4160-4173, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30933473

ABSTRACT

Superhydrophobicity has received significant attention over the past three decades owing to its significant potential in self-cleaning, anti-icing and drag reduction surfaces, energy-harvesting devices, antibacterial coatings, and enhanced heat transfer applications. Superhydrophobicity can be obtained via the roughening of an intrinsically hydrophobic surface, the creation of a re-entrant geometry, or by the roughening of a hydrophilic surface followed by a conformal coating of a hydrophobic material. Intrinsically hydrophobic surfaces have poor thermophysical properties, such as thermal conductivity, and thus are not suitable for heat transfer applications. Re-entrant geometries, although versatile in applications where droplets are deposited, break down during spatially random nucleation and flood the surface. Chemical functionalization of rough metallic substrates, although promising, is not utilized because of the poor durability of conformal hydrophobic coatings. Here we develop a radically different approach to achieve stable superhydrophobicity. By utilizing laser processing and thermal oxidation of copper (Cu) to create a high surface energy hierarchical copper oxide (CuO), followed by repeatable and passive atmospheric adsorption of hydrophobic volatile organic compounds (VOCs), we show that stable superhydrophobicity with apparent advancing contact angles ≈160° and contact angle hysteresis as low as ≈20° can be achieved. We exploit the structure length scale and structure geometry-dependent VOC adsorption dynamics to rationally design CuO nanowires with enhanced superhydrophobicity. To gain an understanding of the VOC adsorption physics, we utilized X-ray photoelectron and ion mass spectroscopy to identify the chemical species deposited on our surfaces in two distinct locations: Urbana, IL, United States and Beijing, China. To test the stability of the atmosphere-mediated superhydrophobic surfaces during heterogeneous nucleation, we used high-speed optical microscopy to demonstrate the occurrence of dropwise condensation and stable coalescence-induced droplet jumping. Our work not only provides rational design guidelines for developing passively durable superhydrophobic surfaces with excellent flooding-resistance and self-healing capability but also sheds light on the key role played by the atmosphere in governing wetting.

14.
ACS Appl Bio Mater ; 2(7): 2726-2737, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-35030808

ABSTRACT

Biofouling disrupts the surface functionality and integrity of engineered substrates. A variety of natural materials such as plant leaves and insect wings have evolved sophisticated physical mechanisms capable of preventing biofouling. Over the past decade, several reports have pinpointed nanoscale surface topography as an important regulator of surface adhesion and growth of bacteria. Although artificial nanoengineered features have been used to create bactericidal materials that kill adhered bacteria, functional surfaces capable of synergistically providing antiadhesion and bactericidal properties remain to be developed. Furthermore, fundamental questions pertaining to the need for intrinsic hydrophobicity to achieve bactericidal performance and the role of structure length scale (nano vs micro) are still being explored. Here, we demonstrate highly scalable, cost-effective, and efficient nanoengineered multifunctional surfaces that possess both antiadhesion and bactericidal properties on industrially relevant copper (Cu) and aluminum (Al) substrates. We characterize antiadhesion and bactericidal performance using a combination of scanning electron microscopy (SEM), atomic force microscopy (AFM), live/dead bacterial staining and imaging, as well as solution-phase and Petrifilm measurements of bacterial viability. Our results showed that nanostructures created on both Cu and Al were capable of physical deformation of adhered Escherichia coli bacteria. Bacterial viability measurements on both Cu and Al indicated a complex interaction between the antiadhesion and bactericidal nature of these materials and their surface topography, chemistry, and structure. Increased superhydrophobicity greatly decreased bacterial adhesion while not significantly influencing surface bactericidal performance. Furthermore, we observed that more densely packed nanoscale structures improved antiadhesion properties when compared to larger features, even over extended time scales of up to 24 h. Our data suggests that the superhydrophobic Al substrate possesses superior antiadhesion and bactericidal effects, even over long time courses. The techniques and insights presented here will inform future work on antiadhesion and bactericidal multifunctional surfaces and enable their rational design.

15.
Nano Lett ; 17(12): 7544-7551, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29178810

ABSTRACT

Water vapor condensation on hydrophobic surfaces has received much attention due to its ability to rapidly shed water droplets and enhance heat transfer, anti-icing, water harvesting, energy harvesting, and self-cleaning performance. However, the mechanism of heterogeneous nucleation on hydrophobic surfaces remains poorly understood and is attributed to defects in the hydrophobic coating exposing the high surface energy substrate. Here, we observe the formation of high surface energy nanoscale agglomerates on hydrophobic coatings after condensation/evaporation cycles in ambient conditions. To investigate the deposition dynamics, we studied the nanoscale agglomerates as a function of condensation/evaporation cycles via optical and field emission scanning electron microscopy (FESEM), microgoniometric contact angle measurements, nucleation statistics, and energy dispersive X-ray spectroscopy (EDS). The FESEM and EDS results indicated that the nanoscale agglomerates stem from absorption of sulfuric acid based aerosol particles inside the droplet and adsorption of volatile organic compounds such as methanethiol (CH3SH), dimethyl disulfide (CH3SSCH), and dimethyl trisulfide (CH3SSSCH3) on the liquid-vapor interface during water vapor condensation, which act as preferential sites for heterogeneous nucleation after evaporation. The insights gained from this study elucidate fundamental aspects governing the behavior of both short- and long-term heterogeneous nucleation on hydrophobic surfaces, suggest previously unexplored microfabrication and air purification techniques, and present insights into the challenges facing the development of durable dropwise condensing surfaces.

16.
Langmuir ; 32(31): 7774-87, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27409353

ABSTRACT

Understanding the fundamental mechanisms governing vapor condensation on nonwetting surfaces is crucial to a wide range of energy and water applications. In this paper, we reconcile classical droplet growth modeling barriers by utilizing two-dimensional axisymmetric numerical simulations to study individual droplet heat transfer on nonwetting surfaces (90° < θa < 170°). Incorporation of an appropriate convective boundary condition at the liquid-vapor interface reveals that the majority of heat transfer occurs at the three phase contact line, where the local heat flux can be up to 4 orders of magnitude higher than at the droplet top. Droplet distribution theory is incorporated to show that previous modeling approaches underpredict the overall heat transfer by as much as 300% for dropwise and jumping-droplet condensation. To verify our simulation results, we study condensed water droplet growth using optical and environmental scanning electron microscopy on biphilic samples consisting of hydrophobic and nanostructured superhydrophobic regions, showing excellent agreement with the simulations for both constant base area and constant contact angle growth regimes. Our results demonstrate the importance of resolving local heat transfer effects for the fundamental understanding and high fidelity modeling of phase change heat transfer on nonwetting surfaces.

17.
ACS Nano ; 10(9): 8223-32, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27447844

ABSTRACT

Droplet-surface interactions are common to a plethora of natural and industrial processes due to their ability to rapidly exchange energy, mass, and momentum. Droplets are particularly of interest due to their large surface-to-volume ratios and hence enhanced transport properties. For example, coalescence-induced droplet jumping on superhydrophobic surfaces has recently received much attention for its potential to enhance heat transfer, anti-icing, and self-cleaning performance by passively shedding microscale water droplets. To study droplet jumping, researchers typically use a two-camera setup to observe the out-of-plane droplet motion, with limited success due to the inability to resolve the depth dimension using two orthogonal cameras. Here we develop a single-camera technique capable of providing three-dimensional (3D) information through the use of focal plane manipulation, termed "focal plane shift imaging" (FPSI). We used FPSI to study the jumping process on superhydrophobic surfaces having a wide range of structure length scales (10 nm < l < 1 µm) and droplet radii (3 µm < R < 160 µm). We benchmarked the FPSI technique and studied the effects of droplet mismatch, multidroplet coalescence, and multihop coalescence on droplet jumping speed. Furthermore, we were able to resolve the full 3D trajectory of multiple jumping events, to show that, unlike previously theorized, the departure angle during droplet jumping is not a function of droplet mismatch or number of droplets coalescing prior to jumping. Rather, angular deviation arises due to in-plane motion postcoalescence governed by droplet pinning. The outcomes of this work both elucidate key fundamental aspects governing droplet jumping and provide a powerful imaging platform for the study of dynamic droplet processes that result in out-of-plane motion such as sliding, coalescence, or impact.

18.
Langmuir ; 31(49): 13452-66, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26571384

ABSTRACT

Water vapor condensation on superhydrophobic surfaces has received much attention in recent years because of its ability to shed water droplets at length scales 3 decades smaller than the capillary length (∼1 mm) via coalescence-induced droplet jumping. Jumping-droplet condensation has been demonstrated to enhance heat transfer, anti-icing, and self-cleaning efficiency and is governed by the theoretical inertial-capillary scaled jumping speed (U). When two droplets coalesce, the experimentally measured jumping speed (Uexp) is fundamentally limited by the internal fluid dynamics during the coalescence process (Uexp < 0.23U). Here, we theoretically and experimentally demonstrate multidroplet (>2) coalescence as an avenue to break the two-droplet speed limit. Using side-view and top-view high-speed imaging to study more than 1000 jumping events on a copper oxide nanostructured superhydrophobic surface, we verify that droplet jumping occurs as a result of three fundamentally different mechanisms: (1) coalescence between two droplets, (2) coalescence among more than two droplets (multidroplet), and (3) coalescence between one or more droplets on the surface and a returning droplet that has already departed (multihop). We measured droplet-jumping speeds for a wide range of droplet radii (5-50 µm) and demonstrated that while the two-droplet capillary-to-inertial energy conversion mechanism is not identical to that of multidroplet jumping, speeds above the theoretical two-droplet limit (>0.23U) can be achieved. However, we discovered that multihop coalescence resulted in drastically reduced jumping speeds (≪0.23U) due to adverse momentum contributions from returning droplets. To quantify the impact of enhanced jumping speed on heat-transfer performance, we developed a condensation critical heat flux model to show that modest jumping speed enhancements of 50% using multidroplet jumping can enhance performance by up to 40%. Our results provide a starting point for the design of enhanced-performance jumping-droplet surfaces for industrial applications.

19.
ACS Nano ; 9(5): 4806-13, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25844819

ABSTRACT

As-grown randomly aligned networks of carbon nanotubes (CNTs) invariably suffer from limited transport properties due to high resistance at the crossed junctions between CNTs. In this work, Joule heating of the highly resistive CNT junctions is carried out in the presence of a spin-coated layer of a suitable chemical precursor. The heating triggers thermal decomposition of the chemical precursor, tris(dibenzylideneacetone)dipalladium (Pd2(dba)3), and causes local deposition of Pd nanoparticles at the CNT junctions, thereby improving the on/off current ratio and mobility of CNT network devices by an average factor of ∼6. This process can be conducted either in air or under vacuum depending on the characteristics of the precursor species. The solution-mediated nanosoldering process is simple, fast, scalable with manufacturing techniques, and extendable to the nanodeposition of a wide variety of materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...