Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 947: 174592, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38981549

ABSTRACT

This 20-year study (2001-2020) conducted in Jangmok Bay, Korea, assessed the intricate relationships between environmental factors and Noctiluca scintillans blooms. Granger causality tests and PCA analysis were used to assess the impact of sea surface temperature (SST), salinity, dissolved oxygen (DO) concentration, wind patterns, rainfall, and chlorophyll-a (Chl-a) concentration on bloom dynamics. The results revealed significant, albeit delayed, influences of these variables on bloom occurrence, with SST exhibiting a notable 2-month lag and salinity a 1-month lag in their impact. Additionally, the analysis highlighted the significant roles of phosphate, ammonium, and silicate, which influenced N. scintillans blooms with lags of 1 to 3 months. The PCA demonstrates how SST and wind speed during spring and summer, along with wind direction and salinity in winter, significantly impact N. scintillans blooms. We noted not only an increase in large-scale N. scintillans blooms but also a cyclical pattern of occurrence every 3 years. These findings underscore the synergistic effects of environmental factors, highlighting the complex interplay between SST, salinity, DO concentration, and weather conditions to influence bloom patterns. This research enhances our understanding of harmful algal blooms (HABs), emphasizing the importance of a comprehensive approach that considers multiple interconnected environmental variables for predicting and managing N. scintillans blooms.

2.
Ocean Sci J ; 55(2): 265-277, 2020.
Article in English | MEDLINE | ID: mdl-32837526

ABSTRACT

This study investigated the changes in concentrations of haloacetic acids (HAAs) and haloacetonitriles (HANs) as disinfection byproducts (DBPs) for different storage times (as long as 20 days) and temperatures (5 to 20°C). A ship's voyage after treatment of its ballast water with active substances was considered. The HAA showed a clear trend of increasing concentration only with storage time, especially for dibromoacetic acid (DBAA). Dissolved organic nitrogen concentration was increased by the decomposition of dead organisms at 10 days, and then reacted with the remaining total residual oxidants, resulting in increased concentration of DBPs. An environmental risk assessment indicated that DBAN and monochloroacetic acid (MCAA) could have a negative impact on the marine environment. This study suggests that, because all international vessels must have a ballast water management system installed by September, 2024, the conc e ntra tio ns of DBPs, especially DBAN, MCAA, and DBAA, should be monitored in the waters at major international ports.

3.
Sci Total Environ ; 605-606: 852-859, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28683429

ABSTRACT

In the G8 and G9 approval tests for ballast water management systems, organic carbon additives are frequently supplemented into test water to satisfy the water quality requirements. Because organic additives can affect the approval test, the additive selected, and its use and validation should be included in the test report. This study assessed the effects of organic carbon additives on the concentration of total residual oxidants (TROs) and the formation of disinfection by-products (DBPs). The concentration of dissolved organic carbon (DOC) in test water containing additives varied depending on the type of additive, but all additives, except for methylcellulose, had concentrations similar to or higher than the theoretical values. There was a low concentration of particulate organic carbon (POC) compared to the amount of corn starch added. Over the course of the five-day holding time, TRO concentrations tended to decrease. In general, substances with a large molecular size had a higher DBP concentration than their counterparts with a smaller molecular size, some of which, however produced the highest DBP concentrations due to their molecular structure. The results suggest that the formation of DBPs is affected by the reaction with TROs, molecular size, and molecular structure in a complex manner.

4.
Mar Pollut Bull ; 95(1): 315-23, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25841887

ABSTRACT

We examined the synergistic effects of CO2 injection on electro-chlorination in disinfection of plankton and bacteria in simulated ballast water. Chlorination was performed at dosages of 4 and 6ppm with and without CO2 injection on electro-chlorination. Testing was performed in both seawater and brackish water quality as defined by IMO G8 guidelines. CO2 injection notably decreased from the control the number of Artemia franciscana, a brine shrimp, surviving during a 5-day post-treatment incubation (1.8 and 2.3 log10 reduction in seawater and brackish water, respectively at 6ppm TRO+CO2) compared with water electro-chlorinated only (1.2 and 1.3 log10 reduction in seawater and brackish water, respectively at 6ppm TRO). The phytoplankton Tetraselmis suecica, was completely disinfected with no live cell found at >4ppm TRO with and without CO2 addition. The effects of CO2 addition on heterotrophic bacterial growth was not different from electro-chlorination only. Total residual oxidant concentration (TRO) more rapidly declined in electro-chlorination of both marine and brackish waters compared to chlorine+CO2 treated waters, with significantly higher amount of TRO being left in waters treated with the CO2 addition. Total concentration of trihalomethanes (THMs) and haloacetic acids (HAAs) measured at day 0 in brackish water test were found to be 2- to 3-fold higher in 6ppm TRO+CO2-treated water than in 6ppm TRO treated water. The addition of CO2 to electro-chlorination may improve the efficiency of this sterilizing treatment of ballast water, yet the increased production of some disinfection byproducts needs further study.


Subject(s)
Carbon Dioxide/toxicity , Disinfection/methods , Halogenation , Plankton/drug effects , Water Purification/methods , Animals , Bacteria/drug effects , Chlorine , Disinfectants , Disinfection/statistics & numerical data , Electrolysis , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Oxidants , Phytoplankton , Seawater/microbiology , Ships
SELECTION OF CITATIONS
SEARCH DETAIL
...