Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Mycobiology ; 50(1): 89-98, 2022.
Article in English | MEDLINE | ID: mdl-35291597

ABSTRACT

Inflammaging in male reproductive organs covers a wide variety of problems, including sexual dysfunction and infertility. In this study, the beneficial effects of cordycepin (COR), isolated from potential medicinal fungi Cordyceps militaris, in aging-associated testicular inflammation and serum biochemical changes in naturally aged rats were investigated. Male Sprague Dawley rats were divided into young control (YC), aged control (AC), and COR (5, 10, and 20 mg/kg) treated aged rat groups. Aging-associated serum biochemical changes and inflammatory parameters were analyzed by biochemical assay kits, Western blotting, and real-time RT-PCR. Results showed a significant (p < 0.05) alteration in the total blood cell count, lipid metabolism, and liver functional parameters in AC group when compared with YC group. However, COR-treated aged rats ameliorated the altered biochemical parameters significantly (p < 0.05 and p < 0.01 at 5, 10, and 20 mg/kg, respectively). Furthermore, the increase in the expression of inflammatory mediators (COX-2, interleukin (IL)-6, IL-1ß, and tissue necrosis factor-alpha) in aged rat testis was significant (p < 0.05) when compared with YC group. Treatment with COR at 20 mg/kg to aged rats attenuated the increased expression of inflammatory mediators significantly (p < 0.05). Mechanistic studies revealed that the potential attenuating effects exhibited by COR in aged rats was mediated by regulation of NF-κB activation and MAPKs (c-Jun N-terminal kinase, extracellular signal-regulated kinase 1/2, and p38) signaling. In conclusion, COR restored the altered serum biochemical parameters in aged rats and ameliorated the aging-associated testicular inflammation proving the therapeutic benefits of COR targeting inflammaging-associated male sexual dysfunctions.

2.
Pharm Biol ; 60(1): 404-416, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35175170

ABSTRACT

CONTEXT: Cordycepin (COR), from Cordyceps militaris L., (Cordycipitaceae), is a valuable agent with immense health benefits. OBJECTIVE: The protective effects of COR in ageing-associated oxidative and apoptosis events in vivo and hydrogen peroxide (H2O2)-exposed spermatogenesis gene alterations in TM3 Leydig cells was investigated. MATERIALS AND METHODS: Male Sprague-Dawley rats were divided into young control (YC), aged control (AC) and COR treated (COR-20) aged groups. COR-20 group received daily doses of COR (20 mg/kg) for 6 months. Cell viability and hormone levels were analysed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and enzyme immunoassay kits with COR treated at 1, 5, and 10 µg/mL. Oxidative enzymes, spermatogenic, and apoptotic expression in testis tissues were evaluated by Western blotting and real-time RT-PCR. RESULTS: COR treatment (1, 5, and 10 µg/mL) significantly (p < 0.05 ∼ p < 0.001) inhibited the H2O2-induced decrease in the percentage of viable cells (from 63.27% to 71.25%, 85.67% and 93.97%, respectively), and reduced the malondialdehyde (MDA) content (from 4.28 to 3.98, 3.14 and 1.78 nM MDA/mg protein, respectively). Further, the decreased antioxidant enzymes (glutathione-S-transferase mu5, glutathione peroxidase 4 and peroxiredoxin 3), spermatogenesis-related factors (nectin-2 and inhibin-α) and testosterone levels in H2O2-exposed TM3 cells were significantly (p < 0.05 ∼ p < 0.001) ameliorated by COR. In aged rats, COR (20 mg/kg) restored the altered enzymatic and non-enzymatic antioxidative status and attenuated the apoptotic p53 and Bax/Bcl-2 expression significantly (p < 0.05). CONCLUSION: COR might be developed as a potential agent against ageing-associated and oxidative stress-induced male infertility.


Subject(s)
Deoxyadenosines/pharmacology , Leydig Cells/drug effects , Spermatogenesis/drug effects , Testis/drug effects , Aging , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Cordyceps/chemistry , Deoxyadenosines/isolation & purification , Hydrogen Peroxide , Leydig Cells/metabolism , Male , Mice , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
3.
J Ginseng Res ; 44(4): 593-602, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32617039

ABSTRACT

BACKGROUND: Heat stress orchestrates neurodegenerative disorders and results in the formation of reactive oxygen species that leads to cell death. Although the immunomodulatory effects of ginseng are well studied, the mechanism by which ginseng alleviates heat stress in the brain remains elusive. METHODS: Rats were exposed to intermittent heat stress for 6 months, and brain samples were examined to elucidate survival and antiinflammatory effect after Korean Red Ginseng (KRG) treatment. RESULTS: Intermittent long-term heat stress (ILTHS) upregulated the expression of cyclooxygenase 2 and inducible nitric oxide synthase, increasing infiltration of inflammatory cells (hematoxylin and eosin staining) and the level of proinflammatory cytokines [tumor necrosis factor α, interferon gamma (IFN-γ), interleukin (IL)-1ß, IL-6], leading to cell death (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay) and elevated markers of oxidative stress damage (myeloperoxidase and malondialdehyde), resulting in the downregulation of antiapoptotic markers (Bcl-2 and Bcl-xL) and expression of estrogen receptor beta and brain-derived neurotrophic factor, key factors in regulating neuronal cell survival. In contrast, KRG mitigated ILTHS-induced release of proinflammatory mediators, upregulated the mRNA level of the antiinflammatory cytokine IL-10, and increased myeloperoxidase and malondialdehyde levels. In addition, KRG significantly decreased the expression of the proapoptotic marker (Bax), did not affect caspase-3 expression, but increased the expression of antiapoptotic markers (Bcl-2 and Bcl-xL). Furthermore, KRG significantly activated the expression of both estrogen receptor beta and brain-derived neurotrophic factor. CONCLUSION: ILTHS induced oxidative stress responses and inflammatory molecules, which can lead to impaired neurogenesis and ultimately neuronal death, whereas, KRG, being the antioxidant, inhibited neuronal damage and increased cell viability.

4.
Nutrients ; 11(10)2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31618980

ABSTRACT

Gynostemma pentaphyllum is widely used in Asia as a herbal medicine to treat type 2 diabetes, dyslipidemia, and inflammation. Here, we investigated the anti-obesity effect and underlying mechanism of G. pentaphyllum extract (GPE) enriched in gypenoside L, gypenoside LI, and ginsenoside Rg3 and obtained using a novel extraction method. Five-week-old male C57BL/6N mice were fed a control diet (CD), high-fat diet (HFD), HFD + 100 mg/kg body weight (BW)/day GPE (GPE 100), HFD + 300 mg/kg BW/day GPE (GPE 300), or HFD + 30 mg/kg BW/day Orlistat (Orlistat 30) for 8 weeks. The HFD-fed mice showed significant increases in body weight, fat mass, white adipose tissue, and adipocyte hypertrophy compared to the CD group; but GPE inhibited those increases. GPE reduced serum levels of triglyceride, total cholesterol, and LDL-cholesterol, without affecting HDL-cholesterol. GPE significantly increased AMPK activation and suppressed adipogenesis by decreasing the mRNA expression of CCAAT/enhancer binding protein-α (C/EBPα), peroxisome proliferator-activated receptor-γ (PPARγ), sterol regulatory element-binding protein-1c (SREBP1c), PPARγ coactivator-1α, fatty acid synthase (FAS), adipocyte protein 2 (AP2), and sirtuin 1 (SIRT1) and by increasing that of carnitine palmitoyltransferase (CPT1) and hormone- sensitive lipase (HSL). This study demonstrated the ameliorative effect of GPE on obesity and elucidated the underlying molecular mechanism.


Subject(s)
Adipogenesis/drug effects , Adipose Tissue, White/drug effects , Anti-Obesity Agents/pharmacology , Diet, High-Fat , Gynostemma/chemistry , Obesity/prevention & control , Plant Extracts/pharmacology , Sirtuin 1/metabolism , AMP-Activated Protein Kinases/metabolism , Adipose Tissue, White/enzymology , Adipose Tissue, White/physiopathology , Adiposity/drug effects , Animals , Anti-Obesity Agents/isolation & purification , Biomarkers/blood , Blood Glucose/drug effects , Blood Glucose/metabolism , Disease Models, Animal , Lipids/blood , Male , Mice, Inbred C57BL , Obesity/blood , Obesity/enzymology , Obesity/physiopathology , Oxidation-Reduction , Plant Extracts/isolation & purification , Signal Transduction , Up-Regulation , Weight Gain/drug effects
5.
Nutrients ; 11(4)2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31018574

ABSTRACT

Age-related male sexual dysfunction covers a wide variety of issues, together with spermatogenic and testicular impairment. In the present work, the effects of cordycepin (COR), an active constituent of a nutrient powerhouse Cordyceps militaris Linn, on senile testicular dysfunction in rats was investigated. The sperm kinematics, antioxidant enzymes, spermatogenic factors, sex hormone receptors, histone deacetylating sirtuin 1 (SIRT1), and autophagy-related mammalian target of rapamycin complex 1 (mTORC1) expression in aged rat testes were evaluated. Sprague Dawley rats were divided into young control (2-month-old; YC), aged control (12-month-old; AC), and aged plus COR-treated groups (5 (COR-5), 10 (COR-10), and 20 (COR-20) mg/kg). The AC group showed reduced sperm kinematics and altered testicular histomorphology compared with the YC group (p < 0.05). However, compared with the AC group, the COR-treated group exhibited improved sperm motility, progressiveness, and average path/straight line velocity (p < 0.05-0.01). Alterations in spermatogenesis-related protein and mRNA expression were significantly ameliorated (p < 0.05) in the COR-20 group compared with the AC group. The altered histone deacetylating SIRT1 and autophagy-related mTORC1 molecular expression in aged rats were restored in the COR-20 group (p < 0.05). In conclusion, the results suggest that COR holds immense nutritional potential and therapeutic value in ameliorating age-related male sexual dysfunctions.


Subject(s)
Aging , Cordyceps/chemistry , Deoxyadenosines/pharmacology , Testis/drug effects , Animals , Deoxyadenosines/administration & dosage , Gene Expression Regulation/drug effects , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , RNA, Messenger , Rats , Rats, Sprague-Dawley , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Receptors, FSH/genetics , Receptors, FSH/metabolism , Receptors, LH/genetics , Receptors, LH/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Spermatogenesis , Transcription Factors/genetics , Transcription Factors/metabolism
6.
J Ginseng Res ; 43(1): 125-134, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30662301

ABSTRACT

BACKGROUND: Excessive stress causes varied physiological and psychological disorders including male reproductive problems. Here, we attempted to investigate the protective effects of Korean Red Ginseng (Panax ginseng Meyer; KRG) against sub-acute immobilization stress-induced testicular damage in experimental rats. METHODS: Male rats (age, 4 wk; weight, 60-70 g) were divided into four groups (n = 8 in each group): normal control group, immobilization control group, immobilization group treated with 100 mg/kg of KRG daily, and immobilization group treated with 200 mg/kg of KRG daily. Normal control and immobilization control groups received vehicle only. KRG (100 mg/kg and 200 mg/kg) was mixed in the standard diet powder and fed daily for 6 mo. Parameters such as organ weight, blood chemistry, sperm kinematic values, and expression levels of testicular-related molecules were measured using commercially available kits, Western blotting, and reverse transcription polymerase chain reaction. RESULTS: Data revealed that KRG restored the altered testis and epididymis weight in immobilization stress-induced rats significantly (p < 0.05). Further, KRG ameliorated the altered blood chemistry and sperm kinematic values when compared with the immobilization control group and attenuated the altered expression levels of spermatogenesis-related proteins (nectin-2, cAMP responsive element binding protein 1, and inhibin-⍺), sex hormone receptors (androgen receptor, luteinizing hormone receptor, and follicle-stimulating hormone receptor), and antioxidant-related enzymes (glutathione S-transferase m5, peroxiredoxin-4, and glutathione peroxidase 4) significantly in the testes of immobilization stress-induced rats. CONCLUSION: KRG protected immobilization stress-induced testicular damage and fertility factors in rats, thereby indicating its potential in the treatment of stress-related male sterility.

7.
J Ginseng Res ; 43(1): 135-142, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30662302

ABSTRACT

BACKGROUND: Panax ginseng Meyer, known as Korean Red Ginseng (KRG), is one of the important age-old traditional herbs used in boosting libido and improving male fertility. In this study, the effects of Rg3-enriched KRG extract (KGC04P) on heat stress-induced testicular damage in experimental rats was evaluated. METHODS: Male rats (Sprague-Dawley) were divided into four groups (n = 10): normal control (NC), heat-stressed control (HC), heat-stressed plus KGC04P-100 mg/kg (HK100), and heat-stressed plus KGC04P-200 mg/kg (HK200) groups. Starting 1 week prior to heat stress, animals were administered orally with KGC04P (100 and 200 mg/kg) mixed with a regular pellet diet and continued for 25 weeks. Heat stress was induced to HC, HK100, and HK200 groups by intermittently exposing the animals to high temperatures (32 ± 1°C, 2 h/day). After 6 months, animals were euthanized under general anesthesia with carbon dioxide and evaluated for various parameters in serum and testicular tissue by using Western blotting, biochemical kits, and reverse transcription-polymerase chain reaction. RESULTS: Significant (p < 0.05) alterations in several parameters, such as body/organ weight, sperm kinematics, and lipid metabolism marker levels, in the serum and testis of rats were observed. Further, the expression of testicular antioxidant enzymes, inflammatory cytokines, sex hormonal receptors, and spermatogenesis-related genes were also affected significantly (p < 0.05) in the heat-stressed group. However, KGC04P prevented the heat stress-induced changes in rats significantly (p < 0.05) at both concentrations. CONCLUSION: KGC04P attenuated heat stress-induced testicular damage by a multifunctional approach and can be developed as an excellent therapeutic agent for hyperthermia-mediated male infertility.

8.
J Ginseng Res ; 41(4): 578-588, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29021707

ABSTRACT

BACKGROUND: Elevated testicular temperature disrupts spermatogenesis and causes infertility. In the present study, the protective effect of enzymatically biotransformed Panax ginseng Meyer by pectinase (GINST) against chronic intermittent heat stress-induced testicular damage in rats was investigated. METHODS: Male Sprague-Dawley rats (4 wk old, 60-70 g) were divided into four groups: normal control (NC), heat-stress control (HC), heat-stress plus GINST-100 mg/kg (HG100), and heat-stress plus GINST-200 mg/kg (HG200) treatment groups. Each dose of GINST (100 mg/kg and 200 mg/kg) was mixed separately with a regular pellet diet and was administered orally for 24 wk. For inducing heat stress, rats in the NC group were maintained at 25°C, whereas rats in the HC, HG100, and HG200 groups were exposed to 32 ± 1°C for 2 h daily for 6 mo. At week 25, the testes and serum from each animal were analyzed for various parameters. RESULTS: Significant (p < 0.01) changes in the sperm kinematic values and blood chemistry panels were observed in the HC group. Furthermore, spermatogenesis-related molecules, sex hormone receptors, and selected antioxidant enzyme expression levels were also altered in the HC group compared to those in the NC group. GINST (HS100 and HS200) administration significantly (p < 0.05) restored these changes when compared with the HC group. For most of the parameters tested, the HG200 group exhibited potent effects compared with those exhibited by the HG100 group. CONCLUSION: GINST may be categorized as an important medicinal herb and a potential therapeutic for the treatment of male subfertility or infertility caused by hyperthermia.

9.
Reproduction ; 153(6): 737-747, 2017 06.
Article in English | MEDLINE | ID: mdl-28428445

ABSTRACT

Testicular hyperthermia is well studied to cause impaired spermatogenesis. In the present study, the protective effect of enzymatically modified (pectinase-treated) Panax ginseng (GINST) against intermittent sub-chronic heat stress-induced testicular damage in rats was investigated. Male Sprague-Dawley rats were divided into four groups: normal control (NC), heat-stressed control (HC), heat-stressed plus GINST-100 mg/kg/day (HG100) and heat-stressed plus GINST-200 mg/kg/day (HG200) treatment groups. GINST (100 and 200 mg/kg/day) was mixed separately with a regular pellet diet and was administered orally for 8 weeks starting from 1 week before heat exposure. Parameters such as organ weight, blood chemistry, sperm kinetic values, expression of antioxidant enzymes, spermatogenesis molecules and sex hormone receptors levels were measured. Data revealed that kidney and epididymis weight were significantly (P < 0.05) decreased with heat stress and recovered by GINST treatment. Further, the altered levels of blood chemistry panels and sperm kinetic values in heat stress-induced rats were attenuated when GINST was administered (P < 0.05). Furthermore, the expression levels of antioxidant-related enzymes (GSTM5 and GPX4), spermatogenesis-related proteins (CREB1 and INHA) and sex hormone receptors (androgen receptor, luteinizing hormone receptor and follicle-stimulating hormone receptor) were reduced by heat stress; however, GINST treatment effectively ameliorated these changes. In conclusion, GINST was effective in reducing heat-induced damage in various male fertility factors in vivo and has considerable potential to be developed as a useful supplement in improving male fertility.


Subject(s)
Heat Stress Disorders/physiopathology , Hot Temperature , Panax/chemistry , Polygalacturonase/metabolism , Spermatogenesis/drug effects , Testis/pathology , Animals , Male , Rats , Rats, Sprague-Dawley , Testis/drug effects
10.
Exp Gerontol ; 90: 26-33, 2017 04.
Article in English | MEDLINE | ID: mdl-28126553

ABSTRACT

Korean red ginseng (Panax ginseng Meyer) is known to rejuvenate testicular effectiveness and the sperm maturation process by regulating redox proteins in aged rats. This study was performed to investigate the effect of Korean red ginseng water extract (KRG-WE) on the expression level of spermatogenesis-related key biomolecules and sex hormone receptors as well as enzymes regulating oxidation, histone deacetylation, and growth-related activities in aged rat testis. KRG-WE (200mg/kg) mixed with a regular pellet diet was administered to 12-month-old rats for 6months (KRG-AC), whereas the young (YC, 2months) and aged (AC, 12months) controls received the vehicle only. The results showed that the expression levels of spermatogenesis-related key biomolecules (inhibin-α, nectin-2, and cyclic adenosine monophosphate [cAMP] responsive element binding protein [CREB]-1), sex hormone receptors (androgen, luteinizing- and follicle-stimulating hormone receptors [AR, LHR, and FSHR, respectively]), and antioxidant enzymes (glutathione S-transferase mu [GSTm]-5, glutathione peroxidase [GPx]-4, peroxiredoxin [PRx]-3), as well as histone deactylation (silent mating type information regulation 2 homolog 1, SIRT1) and growth-related (mammalian target of rapamycin complex 1, mTORC1) molecules were significantly altered in the AC group rat testes compared with those of the YC group. However, KRG-WE treatment of the AC group significantly (p<0.05) attenuated these molecular changes. From these results, it can be concluded that long-term administration of KRG-WE significantly delayed the aging-induced testicular dysfunction.


Subject(s)
Aging/metabolism , Antioxidants/pharmacology , Panax , Plant Extracts/pharmacology , Sperm Maturation/drug effects , Spermatozoa/metabolism , Aging/drug effects , Animals , Male , Oxidation-Reduction , Phytotherapy , Rats
11.
J Ginseng Res ; 40(3): 292-9, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27616906

ABSTRACT

BACKGROUND: We previously reported that two-phase partition chromatography between ginseng water extract and soybean oil efficiently eliminated pesticide residues. However, an undesirable odor and an unpalatable taste unique to soybean oil were two major disadvantages of the method. This study was carried out to find an alternative vegetable oil that is cost effective, labor effective, and efficient without leaving an undesirable taste and smell. METHODS: We employed six vegetable oils that were available at a grocery store. A 1-mL sample of the corresponding oil containing a total of 32 pesticides, representing four categories, was mixed with 10% aqueous ginseng extract (20 mL) and equivalent vegetable oil (7 mL) in Falcon tubes. The final concentration of the pesticides in the mixture (28 mL) was adjusted to approximately 2 ppm. In addition, pesticides for spiking were clustered depending on the analytical equipment (GC/HPLC), detection mode (electron capture detector/nitrogen-phosphorus detector), or retention time used. Samples were harvested and subjected to quantitative analysis of the pesticides. RESULTS: Soybean oil demonstrated the highest efficiency in partitioning pesticide residues in the ginseng extract to the oil phase. However, canola oil gave the best result in an organoleptic test due to the lack of undesirable odor and unpalatable taste. Furthermore, the qualitative and quantitative changes of ginsenosides evaluated by TLC and HPLC, respectively, revealed no notable change before or after canola oil treatment. CONCLUSION: We suggest that canola oil is an excellent vehicle with respect to its organoleptic property, cost-effectiveness and efficiency of eliminating pesticide residues in ginseng extract.

12.
J Ginseng Res ; 40(2): 185-95, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27158240

ABSTRACT

BACKGROUND: To investigate the effect of pectinase-treated Panax ginseng (GINST) in cellular and male subfertility animal models. METHODS: Hydrogen peroxide (H2O2)-induced mouse spermatocyte GC-2spd cells were used as an in vitro model. Cell viability was measured using MTT assay. For the in vivo study, GINST (200 mg/kg) mixed with a regular pellet diet was administered orally for 4 mo, and the changes in the mRNA and protein expression level of antioxidative and spermatogenic genes in young and aged control rats were compared using real-time reverse transcription polymerase chain reaction and western blotting. RESULTS: GINST treatment (50 µg/mL, 100 µg/mL, and 200 µg/mL) significantly (p < 0.05) inhibited the H2O2-induced (200 µM) cytotoxicity in GC-2spd cells. Furthermore, GINST (50 µg/mL and 100 µg/mL) significantly (p < 0.05) ameliorated the H2O2-induced decrease in the expression level of antioxidant enzymes (peroxiredoxin 3 and 4, glutathione S-transferase m5, and glutathione peroxidase 4), spermatogenesis-related protein such as inhibin-α, and specific sex hormone receptors (androgen receptor, luteinizing hormone receptor, and follicle-stimulating hormone receptor) in GC-2spd cells. Similarly, the altered expression level of the above mentioned genes and of spermatogenesis-related nectin-2 and cAMP response element-binding protein in aged rat testes was ameliorated with GINST (200 mg/kg) treatment. Taken together, GINST attenuated H2O2-induced oxidative stress in GC-2 cells and modulated the expression of antioxidant-related genes and of spermatogenic-related proteins and sex hormone receptors in aged rats. CONCLUSION: GINST may be a potential natural agent for the protection against or treatment of oxidative stress-induced male subfertility and aging-induced male subfertility.

13.
Exp Gerontol ; 69: 94-102, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25980653

ABSTRACT

Distortion of intracellular oxidant and antioxidant balances appears to be a common feature that underlies in age-related male sexual impairment. Therefore regulating oxidative defense mechanisms might be an ideal approach in improving male sexual dysfunctions. In the present study, the effect of Korean red ginseng aqueous extract (KRG) on age-induced testicular dysfunction in rats was investigated. KRG (200mg/kg) mixed with regular pellet diet was administered orally for six months and the morphological, spermatogenic and antioxidant enzyme status in testis of aged rats (18months) were evaluated. Data indicated a significant change in morphology and decrease in spermatogenesis-related parameters in aged rats (AC) compared with young rats (YC). Sperm number, germ cell count, Sertoli cell count and Sertoli cell index were significantly (p<0.05) restored in KRG-treated aged rat groups (G-AC). Further the increased lipid peroxidation as measured by malondialdehyde (p<0.05), and altered enzymatic (superoxide dismutase, glutathione peroxidase, glutathione S-transferase, glutathione reductase and catalase) and non-enzymatic (reduced glutathione, ascorbic acid and α-tocopherol) antioxidants (p<0.05) were attenuated by KRG treatment in aged rats to near normal levels as in YC groups. Furthermore, proteomic analysis demonstrated differential expression of selected proteins such as phosphatidylinositol transfer protein, fatty acid binding protein-9, triosephosphate isomerase-1 and aldehyde (aldose) reductase-1in aged rats was significantly (p<0.05) protected by KRG treatment. In conclusion, long-term administration of KRG restored aging-induced testicular ineffectiveness in rats by modulating redox proteins and oxidative defense mechanisms.


Subject(s)
Lipid Peroxidation/drug effects , Oxidation-Reduction/drug effects , Panax , Plant Extracts/pharmacology , Sperm Maturation/drug effects , Aging/physiology , Animals , Antioxidants/pharmacology , Disease Models, Animal , Erectile Dysfunction/drug therapy , Glutathione Peroxidase/metabolism , Male , Rats , Spermatogenesis/drug effects , Spermatozoa/metabolism , Superoxide Dismutase/metabolism , Treatment Outcome
14.
Phytochemistry ; 114: 125-36, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25457483

ABSTRACT

Ganoderma lucidum is a popular medicinal mushroom with anti-inflammatory potential. In the present study, the aim was to determine the anti-inflammatory effect and mode of action of G. lucidum grown on germinated brown rice (GLBR) in a mouse model of colitis. It was shown that GLBR suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-stimulated macrophages and decreased the expression of COX-2, TNF-α, iNOS, IL-1ß, IL-6, and IL-10 mRNAs. GLBR also inhibited activation of p38, ERK, JNK, MAPKs, and nuclear factor kappa-B (NF-κB). In a mouse model of colitis, colonic mucosal injury was evaluated using macroscopic, biochemical, and histopathological testing. Disease activity index (DAI), macroscopic score, and histological score significantly decreased upon GLBR treatment. Moreover, immunofluorescence studies indicated that DSS activates nuclear translocation of NF-κB in colon tissue, which is attenuated by GLBR extract. These findings suggest that GLBR is protective against colitis via inhibition of MAPK phosphorylation and NF-κB activation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Oryza/microbiology , Reishi/chemistry , Animals , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Disease Models, Animal , Interleukin-10 , Interleukin-1beta/immunology , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Male , Mice , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Nitric Oxide/metabolism , Signal Transduction/drug effects
15.
J Ginseng Res ; 37(4): 475-82, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24235862

ABSTRACT

The main active components of Panax ginseng are ginsenosides. Ginsenoside Rb1 and Rg1 are accepted as marker substances for quality control worldwide. The analytical methods currently used to detect these two compounds unfairly penalize steamed and dried (red) P. ginseng preparations, because it has a lower content of those ginsenosides than white ginseng. To manufacture red ginseng products from fresh ginseng, the ginseng roots are exposed to high temperatures for many hours. This heating process converts the naturally occurring ginsenoside Rb1 and Rg1 into artifact ginsenosides such as ginsenoside Rg3, Rg5, Rh1, and Rh2, among others. This study highlights the absurdity of the current analytical practice by investigating the time-dependent changes in the crude saponin and the major natural and artifact ginsenosides contents during simmering. The results lead us to recommend (20S)- and (20R)-ginsenoside Rg3 as new reference materials to complement the current P. ginseng preparation reference materials ginsenoside Rb1 and Rg1. An attempt has also been made to establish validated qualitative and quantitative analytical procedures for these four compounds that meet International Conference of Harmonization (ICH) guidelines for specificity, linearity, range, accuracy, precision, detection limit, quantitation limit, robustness and system suitability. Based on these results, we suggest a validated analytical procedure which conforms to ICH guidelines and equally values the contents of ginsenosides in white and red ginseng preparations.

SELECTION OF CITATIONS
SEARCH DETAIL
...