Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biochemistry ; 62(22): 3276-3282, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37936269

ABSTRACT

Chlamydia protein associating with death domains (CADD), the founding member of a recently discovered class of nonheme dimetal enzymes termed hemeoxygenase-like dimetaloxidases (HDOs), plays an indispensable role in pathogen survival. CADD orchestrates the biosynthesis of p-aminobenzoic acid (pABA) for integration into folate via the self-sacrificial excision of a protein-derived tyrosine (Tyr27) and several additional processing steps, the nature and timing of which have yet to be fully clarified. Nuclear magnetic resonance (NMR) and proteomics approaches reveal the source and probable timing of amine installation by a neighboring lysine (Lys152). Turnover studies using limiting O2 have identified a para-aminobenzaldehyde (pABCHO) metabolic intermediate that is formed on the path to pABA formation. The use of pABCHO and other probe substrates shows that the heterobimetallic Fe/Mn form of the enzyme is capable of oxygen insertion to generate the pABA-carboxylate.


Subject(s)
4-Aminobenzoic Acid , para-Aminobenzoates , para-Aminobenzoates/metabolism , 4-Aminobenzoic Acid/metabolism , Folic Acid/metabolism
2.
J Am Chem Soc ; 145(44): 24210-24217, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37874539

ABSTRACT

BelL and HrmJ are α-ketoglutarate-dependent nonheme iron enzymes that catalyze the oxidative cyclization of 6-nitronorleucine, resulting in the formation of two diastereomeric 3-(2-nitrocyclopropyl)alanine (Ncpa) products containing trans-cyclopropane rings with (1'R,2'R) and (1'S,2'S) configurations, respectively. Herein, we investigate the catalytic mechanism and stereodivergency of the cyclopropanases. The results suggest that the nitroalkane moiety of the substrate is first deprotonated to produce the nitronate form. Spectroscopic analyses and biochemical assays with substrates and analogues indicate that an iron(IV)-oxo species abstracts proS-H from C4 to initiate intramolecular C-C bond formation. A hydroxylation intermediate is unlikely to be involved in the cyclopropanation reaction. Additionally, a genome mining approach is employed to discover new homologues that perform the cyclopropanation of 6-nitronorleucine to generate cis-configured Ncpa products with (1'R,2'S) or (1'S,2'R) stereochemistries. Sequence and structure comparisons of these cyclopropanases enable us to determine the amino acid residues critical for controlling the stereoselectivity of cyclopropanation.


Subject(s)
Aminocaproates , Stereoisomerism , Oxidation-Reduction
3.
Angew Chem Int Ed Engl ; 62(41): e202311099, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37639670

ABSTRACT

Mononuclear nonheme iron(II) and 2-oxoglutarate (Fe/2OG)-dependent oxygenases and halogenases are known to catalyze a diverse set of oxidative reactions, including hydroxylation, halogenation, epoxidation, and desaturation in primary metabolism and natural product maturation. However, their use in abiotic transformations has mainly been limited to C-H oxidation. Herein, we show that various enzymes of this family, when reconstituted with Fe(II) or Fe(III), can catalyze Mukaiyama hydration-a redox neutral transformation. Distinct from the native reactions of the Fe/2OG enzymes, wherein oxygen atom transfer (OAT) catalyzed by an iron-oxo species is involved, this nonnative transformation proceeds through a hydrogen atom transfer (HAT) pathway in a 2OG-independent manner. Additionally, in contrast to conventional inorganic catalysts, wherein a dinuclear iron species is responsible for HAT, the Fe/2OG enzymes exploit a mononuclear iron center to support this reaction. Collectively, our work demonstrates that Fe/2OG enzymes have utility in catalysis beyond the current scope of catalytic oxidation.


Subject(s)
Iron , Oxygenases , Oxygenases/metabolism , Iron/metabolism , Ketoglutaric Acids/metabolism , Oxidation-Reduction , Catalysis , Hydrogen
4.
J Am Chem Soc ; 145(11): 6240-6246, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36913534

ABSTRACT

Aziridines are compounds with a nitrogen-containing three-membered ring. When it is incorporated into natural products, the reactivity of the strained ring often drives the biological activities of aziridines. Despite its importance, the enzymes and biosynthetic strategies deployed to install this reactive moiety remain understudied. Herein, we report the use of in silico methods to identify enzymes with potential aziridine-installing (aziridinase) functionality. To validate candidates, we reconstitute enzymatic activity in vitro and demonstrate that an iron(IV)-oxo species initiates aziridine ring closure by the C-H bond cleavage. Furthermore, we divert the reaction pathway from aziridination to hydroxylation using mechanistic probes. This observation, isotope tracing experiments using H218O and 18O2, and quantitative product analysis, provide evidence for the polar capture of a carbocation species by the amine in the pathway to aziridine installation.


Subject(s)
Aziridines , Iron , Iron/chemistry , Hydroxylation , Catalysis
5.
Nat Commun ; 13(1): 5343, 2022 09 12.
Article in English | MEDLINE | ID: mdl-36097268

ABSTRACT

Two different types of desaturations are employed by iron- and 2-oxoglutarate-dependent (Fe/2OG) enzymes to construct vinyl isonitrile and isocyanoacrylate moieties found in isonitrile-containing natural products. A substrate-bound protein structure reveals a plausible strategy to affect desaturation and hints at substrate promiscuity of these enzymes. Analogs are synthesized and used as mechanistic probes to validate structural observations. Instead of proceeding through hydroxylated intermediate as previously proposed, a plausible carbocation species is utilized to trigger C=C bond installation. These Fe/2OG enzymes can also accommodate analogs with opposite chirality and different functional groups including isonitrile-(D)-tyrosine, N-formyl tyrosine, and phloretic acid, while maintaining the reaction selectivity.


Subject(s)
Iron , Ketoglutaric Acids , Iron/metabolism , Ketoglutaric Acids/metabolism , Tyrosine
6.
Proc Natl Acad Sci U S A ; 119(39): e2210908119, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36122239

ABSTRACT

Chlamydia protein associating with death domains (CADD) is involved in the biosynthesis of para-aminobenzoate (pABA), an essential component of the folate cofactor that is required for the survival and proliferation of the human pathogen Chlamydia trachomatis. The pathway used by Chlamydiae for pABA synthesis differs from the canonical multi-enzyme pathway used by most bacteria that relies on chorismate as a metabolic precursor. Rather, recent work showed pABA formation by CADD derives from l-tyrosine. As a member of the emerging superfamily of heme oxygenase-like diiron oxidases (HDOs), CADD was proposed to use a diiron cofactor for catalysis. However, we report maximal pABA formation by CADD occurs upon the addition of both iron and manganese, which implicates a heterobimetallic Fe:Mn cluster is the catalytically active form. Isotopic labeling experiments and proteomics studies show that CADD generates pABA from a protein-derived tyrosine (Tyr27), a residue that is ∼14 Šfrom the dimetal site. We propose that this self-sacrificial reaction occurs through O2 activation by a probable Fe:Mn cluster through a radical relay mechanism that connects to the "substrate" Tyr, followed by amination and direct oxygen insertion. These results provide the molecular basis for pABA formation in C. trachomatis, which will inform the design of novel therapeutics.


Subject(s)
Bacterial Proteins , Chlamydia trachomatis , Oxygenases , Tyrosine , para-Aminobenzoates , Bacterial Proteins/metabolism , Chlamydia trachomatis/enzymology , Folic Acid , Iron/metabolism , Manganese/metabolism , Oxygen/metabolism , Oxygenases/metabolism , Tyrosine/metabolism , para-Aminobenzoates/metabolism
7.
ACS Catal ; 12(4): 2270-2279, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35992736

ABSTRACT

Despite the diversity of reactions catalyzed by 2-oxoglutarate-dependent nonheme iron (Fe/2OG) enzymes identified in recent years, only a limited number of these enzymes have been investigated in mechanistic detail. In particular, several Fe/2OG-dependent enzymes capable of catalyzing isocyanide formation have been reported. While the glycine moiety has been identified as a biosynthon for the isocyanide group, how the actual conversion is effected remains obscure. To elucidate the catalytic mechanism, we characterized two previously unidentified (AecA and AmcA) along with two known (ScoE and SfaA) Fe/2OG-dependent enzymes that catalyze N≡C triple bond installation using synthesized substrate analogues and potential intermediates. Our results indicate that isocyanide formation likely entails a two-step sequence involving an imine intermediate that undergoes decarboxylation-assisted desaturation to yield the isocyanide product. Results obtained from the in vitro experiments are further supported by mutagenesis, the product-bound enzyme structure, and in silico analysis.

8.
Biochemistry ; 59(21): 1961-1965, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32401494

ABSTRACT

Applying enzymatic reactions to produce useful molecules is a central focus of chemical biology. Iron and 2-oxoglutarate (Fe/2OG) enzymes are found in all kingdoms of life and catalyze a broad array of oxidative transformations. Herein, we demonstrate that the activity of an Fe/2OG enzyme can be redirected when changing the targeted carbon hybridization from sp3 to sp2. During leucine 5-hydroxylase catalysis, installation of an olefin group onto the substrate redirects the Fe(IV)-oxo species reactivity from hydroxylation to asymmetric epoxidation. The resulting epoxide subsequently undergoes intramolecular cyclization to form the substituted piperidine, 2S,5S-hydroxypipecolic acid.


Subject(s)
Alkenes/metabolism , Leucine/chemistry , Leucine/metabolism , Mixed Function Oxygenases/metabolism , Nostoc/enzymology , Alkenes/chemistry , Mixed Function Oxygenases/chemistry , Molecular Conformation , Substrate Specificity
9.
J Am Chem Soc ; 142(13): 6268-6284, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32131594

ABSTRACT

Mechanisms of enzymatic epoxidation via oxygen atom transfer (OAT) to an olefin moiety is mainly derived from the studies on thiolate-heme containing epoxidases, such as cytochrome P450 epoxidases. The molecular basis of epoxidation catalyzed by nonheme-iron enzymes is much less explored. Herein, we present a detailed study on epoxidation catalyzed by the nonheme iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenase, AsqJ. The native substrate and analogues with different para substituents ranging from electron-donating groups (e.g., methoxy) to electron-withdrawing groups (e.g., trifluoromethyl) were used to probe the mechanism. The results derived from transient-state enzyme kinetics, Mössbauer spectroscopy, reaction product analysis, X-ray crystallography, density functional theory calculations, and molecular dynamic simulations collectively revealed the following mechanistic insights: (1) The rapid O2 addition to the AsqJ Fe(II) center occurs with the iron-bound 2OG adopting an online-binding mode in which the C1 carboxylate group of 2OG is trans to the proximal histidine (His134) of the 2-His-1-carboxylate facial triad, instead of assuming the offline-binding mode with the C1 carboxylate group trans to the distal histidine (His211); (2) The decay rate constant of the ferryl intermediate is not strongly affected by the nature of the para substituents of the substrate during the OAT step, a reactivity behavior that is drastically different from nonheme Fe(IV)-oxo synthetic model complexes; (3) The OAT step most likely proceeds through a stepwise process with the initial formation of a C(benzylic)-O bond to generate an Fe-alkoxide species, which is observed in the AsqJ crystal structure. The subsequent C3-O bond formation completes the epoxide installation.


Subject(s)
Aspergillus nidulans/metabolism , Epoxy Compounds/metabolism , Fungal Proteins/metabolism , Ketoglutaric Acids/metabolism , Oxygen/metabolism , Oxygenases/metabolism , Aspergillus nidulans/chemistry , Aspergillus nidulans/enzymology , Crystallography, X-Ray , Epoxy Compounds/chemistry , Fungal Proteins/chemistry , Iron/chemistry , Iron/metabolism , Models, Molecular , Oxygen/chemistry , Oxygenases/chemistry
10.
J Am Chem Soc ; 140(45): 15190-15193, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30376630

ABSTRACT

Installation of olefins into molecules is a key transformation in organic synthesis. The recently discovered decarboxylation-assisted olefination in the biosynthesis of rhabduscin by a mononuclear non-heme iron enzyme ( P.IsnB) represents a novel approach in olefin construction. This method is commonly employed in natural product biosynthesis. Herein, we demonstrate that a ferryl intermediate is used for C-H activation at the benzylic position of the substrate. We further establish that P.IsnB reactivity can be switched from olefination to hydroxylation using electron-withdrawing groups appended on the phenyl moiety of the analogues. These experimental observations imply that a pathway involving an initial C-H activation followed by a benzylic carbocation species or by electron transfer coupled ß-scission is likely utilized to complete C═C bond formation.


Subject(s)
Alkenes/metabolism , Nonheme Iron Proteins/metabolism , Alkenes/chemistry , Biocatalysis , Decarboxylation , Molecular Structure
11.
J Org Chem ; 81(8): 3177-87, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27032965

ABSTRACT

A primary amine-catalyzed asymmetric formal aza-Diels-Alder reaction of trifluoromethyl hemiaminals with enones was developed via a chiral gem-diamine intermediate. This novel protocol allowed facile access to structurally diverse trifluoromethyl-substituted piperidine scaffolds with high stereoselectivity. The utility of this method was further demonstrated through a concise approach to biologically active 4-hydroxypiperidine. More importantly, a stepwise mechanism involving an asymmetric induction process was proposed to rationalize the positive correlation between the chirality of the gem-diamine intermediate and the formal aza-Diels-Alder product.

SELECTION OF CITATIONS
SEARCH DETAIL
...