Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 15(6): 404, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858355

ABSTRACT

Senescent cells exhibit a diverse spectrum of changes in their morphology, proliferative capacity, senescence-associated secretory phenotype (SASP) production, and mitochondrial homeostasis. These cells often manifest with elongated mitochondria, a hallmark of cellular senescence. However, the precise regulatory mechanisms orchestrating this phenomenon remain predominantly unexplored. In this study, we provide compelling evidence for decreases in TIA-1, a pivotal regulator of mitochondrial dynamics, in models of both replicative senescence and ionizing radiation (IR)-induced senescence. The downregulation of TIA-1 was determined to trigger mitochondrial elongation and enhance the expression of senescence-associated ß-galactosidase, a marker of cellular senescence, in human foreskin fibroblast HS27 cells and human keratinocyte HaCaT cells. Conversely, the overexpression of TIA-1 mitigated IR-induced cellular senescence. Notably, we identified the miR-30-5p family as a novel factor regulating TIA-1 expression. Augmented expression of the miR-30-5p family was responsible for driving mitochondrial elongation and promoting cellular senescence in response to IR. Taken together, our findings underscore the significance of the miR-30-5p/TIA-1 axis in governing mitochondrial dynamics and cellular senescence.


Subject(s)
Cellular Senescence , MicroRNAs , Mitochondria , Mitochondrial Dynamics , T-Cell Intracellular Antigen-1 , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Cellular Senescence/radiation effects , Cellular Senescence/genetics , Mitochondrial Dynamics/genetics , T-Cell Intracellular Antigen-1/metabolism , T-Cell Intracellular Antigen-1/genetics , Mitochondria/metabolism , Fibroblasts/metabolism , Fibroblasts/radiation effects , Cell Line , Keratinocytes/metabolism , Keratinocytes/radiation effects , Keratinocytes/cytology , Signal Transduction , Radiation, Ionizing
3.
Biochem Biophys Res Commun ; 686: 149183, 2023 12 17.
Article in English | MEDLINE | ID: mdl-37926044

ABSTRACT

Dysregulation of gene expression is critical for the progression of cancer. The augmented expression of hnRNP A1 in patients with hepatocellular carcinoma (HCC) has been related to its oncogenic functions. However, the underlying mechanisms responsible for upregulation of hnRNP A1 have not been fully elucidated. In the present study, we identified microRNA-195-5p (miR-195-5p), a miRNA downregulated in HCC, as a novel regulator governing hnRNP A1 expression. Notably, our investigations showed an inverse correlation between hnRNP A1 level, which was increased in HCC, and miR-195-5p level, which was decreased. Our findings demonstrated that hnRNP A1 significantly enhanced the migration and invasion of PLC/PRF/5 cells through its association with mRNAs regulating metastasis. MiR-195-5p also interfered with the hnRNP A1-mediated cell migration by targeting hnRNP A1. Our results underscore the significance of the miR-195-5p/hnRNP A1 axis in regulating the migratory potential of cancer cells and its role in promoting HCC by orchestrating cell migration processes.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Carcinoma, Hepatocellular/pathology , Heterogeneous Nuclear Ribonucleoprotein A1/genetics , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Liver Neoplasms/pathology , Cell Proliferation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Cell Movement/genetics , Gene Expression Regulation, Neoplastic
4.
Cell Death Dis ; 13(12): 1019, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36470872

ABSTRACT

RNA binding protein HuD plays essential roles in gene expression by regulating RNA metabolism, and its dysregulation is involved in the pathogenesis of several diseases, including tumors, neurodegenerative diseases, and diabetes. Here, we explored HuD-mediated differential expression of secretory proteins in mouse insulinoma ßTC6 cells using a cytokine array. Endostatin and Serpin E1 that play anti-angiogenic roles were identified as differentially expressed proteins by HuD. HuD knockdown increased the expression of α chain of collagen XVIII (Col18a1), a precursor form of endostatin, and Serpin E1 by associating with the 3'-untranslated regions (UTRs) of Col18a1 and Serpin E1 mRNAs. Reporter analysis revealed that HuD knockdown increased the translation of EGFP reporters containing 3'UTRs of Col18a1 and Serpin E1 mRNAs, which suggests the role of HuD as a translational repressor. Co-cultures of ßTC6 cells and pancreatic islet endothelial MS1 cells were used to assess the crosstalk between ß cells and islet endothelial cells, and the results showed that HuD downregulation in ßTC6 cells inhibited the growth and migration of MS1 cells. Ectopic expression of HuD decreased Col18a1 and Serpin E1 expression, while increasing the markers of islet vascular cells in the pancreas of db/db mice. Taken together, these results suggest that HuD has the potential to regulate the crosstalk between ß cells and islet endothelial cells by regulating Endostatin and Serpin E1 expression, thereby contributing to the maintenance of homeostasis in the islet microenvironment.


Subject(s)
ELAV-Like Protein 4 , Endostatins , Insulin-Secreting Cells , Plasminogen Activator Inhibitor 1 , Animals , Mice , 3' Untranslated Regions/genetics , Endostatins/genetics , Endostatins/metabolism , Endothelial Cells/metabolism , Insulin-Secreting Cells/metabolism , Plasminogen Activator Inhibitor 1/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism , ELAV-Like Protein 4/genetics , ELAV-Like Protein 4/metabolism
5.
Cell Death Dis ; 13(4): 329, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35411051

ABSTRACT

HuD, an RNA binding protein, plays a role in the regulation of gene expression in certain types of cells, including neuronal cells and pancreatic ß-cells, via RNA metabolism. Its aberrant expression is associated with the pathogenesis of several human diseases. To explore HuD-mediated gene regulation, stable cells expressing short hairpin RNA against HuD were established using mouse neuroblastoma Neuro2a (N2a) cells, which displayed enhanced phenotypic characteristics of cellular senescence. Two approaches, RNA immunoprecipitation (RNA IP)-NanoString profiling and cytokine array, were used to subsequently identify a subset of putative HuD targets that act as senescence-associated secretory phenotype (SASP), including C-C motif ligand 2 (CCL2), CCL20, C-X-C motif chemokine ligand 2 (CXCL2), and interleukin-6 (IL-6). Here, we further demonstrated that HuD regulates the expression of CCL2, a SASP candidate upregulated in cells following HuD knockdown, by binding to the 3'-untranslated region (UTR) of Ccl2 mRNA. Downregulation of HuD increased the level of CCL2 in N2a cells and the brain tissues of HuD knockout (KO) mice. Exposure to γ-irradiation induced cellular senescence in N2a cells and HuD knockdown facilitated stress-induced cellular senescence. Our results reveal that HuD acts as a novel regulator of CCL2 expression, and its aberrant expression may contribute to cellular senescence by regulating SASP production.


Subject(s)
ELAV-Like Protein 4/metabolism , Insulin-Secreting Cells , Senescence-Associated Secretory Phenotype , 3' Untranslated Regions , Animals , Cellular Senescence/genetics , Insulin-Secreting Cells/metabolism , Ligands , Mice , Mice, Knockout , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...