Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters










Publication year range
2.
Nat Chem ; 12(1): 90-97, 2020 01.
Article in English | MEDLINE | ID: mdl-31792388

ABSTRACT

Topological transitions between considerably different phases typically require harsh conditions to collectively break chemical bonds and overcome the stress caused to the original structure by altering its correlated bond environment. In this work we present a case system that can achieve rapid rearrangement of the whole lattice of a metal-organic framework through a domino alteration of the bond connectivity under mild conditions. The system transforms from a disordered metal-organic framework with low porosity to a highly porous and crystalline isomer within 40 s following activation (solvent exchange and desolvation), resulting in a substantial increase in surface area from 725 to 2,749 m2 g-1. Spectroscopic measurements show that this counter-intuitive lattice rearrangement involves a metastable intermediate that results from solvent removal on coordinatively unsaturated metal sites. This disordered-crystalline switch between two topological distinct metal-organic frameworks is shown to be reversible over four cycles through activation and reimmersion in polar solvents.

3.
ACS Appl Mater Interfaces ; 11(33): 30460-30469, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31353881

ABSTRACT

By combining experimental and theoretical approaches, we investigate the quantitative relationship between molecular desorption temperature and binding energy on d and f metal oxide surfaces. We demonstrate how temperature-programmed desorption can be used to quantitatively correlate the theoretical surface chemistry of metal oxides (via on-site Hubbard U correction) to gas surface interactions for catalytic reactions. For this purpose, both CO and NO oxidation mechanisms are studied in a step-by-step reaction process for perovskite and mullite-type oxides, respectively. Additionally, we show solutions for over-binding issues found in COx, NOx, SOx, and other covalently bonded molecules that must be considered during surface reaction modeling. This work shows the high reliability of using TPD and density functional theory in conjunction to create accurate surface chemistry information for a variety of correlated metal oxide materials.

4.
J Am Chem Soc ; 141(27): 10722-10728, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31251057

ABSTRACT

The correlation between lattice oxygen (O) binding energy and O oxidation activity imposes a fundamental limit in developing oxide catalysts, simultaneously meeting the stringent thermal stability and catalytic activity standards for complete oxidation reactions under harsh conditions. Typically, strong O binding indicates a stable surface structure, but low O oxidation activity, and vice versa. Using nitric oxide (NO) catalytic oxidation as a model reaction, we demonstrate that this conflicting correlation can be avoided by cooperative lattice oxygen redox on SmMn2O5 mullite oxides, leading to stable and active oxide surface structures. The strongly bound neighboring lattice oxygen pair cooperates in NO oxidation to form bridging nitrate (NO3-) intermediates, which can facilely transform into monodentate NO3- by a concerted rotation with simultaneous O2 adsorption onto the resulting oxygen vacancy. Subsequently, monodentate NO3- species decompose to NO2 to restore one of the lattice oxygen atoms that act as a reversible redox center, and the vacancy can easily activate O2 to replenish the consumed one. This discovery not only provides insights into the cooperative reaction mechanism but also aids the design of oxidation catalysts with the strong O binding region, offering strong activation of O2, high O activity, and high thermal stability in harsh conditions.

5.
ACS Appl Mater Interfaces ; 10(44): 38610-38620, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30335353

ABSTRACT

Cleaning and passivation of metal surfaces are necessary steps for selective film deposition processes that are attractive for some microelectronic applications (e.g., fully aligned vias or self-aligned contacts). For copper, there is limited knowledge about the mechanisms of the copper oxide reduction process and subsequent passivation layer formation reactions. We have investigated the in situ cleaning (i.e., oxidation and reduction by vapor-phase species) and passivation of chemical-mechanical polishing (CMP)-prepared Cu films in an effort to derive the mechanisms associated with selectively tailoring the surface chemistry. By monitoring the interaction of vapor-phase ethanol with the surface species generated after ozone cleaning at 300 °C, we find that the optimum procedure to remove these species and avoid byproduct redeposition is to use atomic layer deposition (ALD)-like binary cycles of ethanol and N2, with active pumping. We have further explored passivation of clean Cu using benzotriazole and 2,2'-bipyridine in an ALD environment. Both molecules chemisorb on clean Cu in an upright orientation, with respect to the metal surface at temperatures higher than the melting point of the organic inhibitors (100 ≤ T < 300 °C). Both molecules desorb without decomposition from clean Cu above 300 °C but not from Cu2O. Previous studies related to the passivation of Cu surfaces using heterocyclic amines have focused on solution-based or ultrahigh vacuum applications of the passivation molecules onto single crystalline Cu samples. The present work explores more industrially relevant vapor-phase passivation of CMP-cleaned, electroplated Cu samples using ALD-like processing conditions and in situ vapor-phase cleaning.

6.
J Am Chem Soc ; 140(44): 14735-14739, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30351024

ABSTRACT

Liquid fluoride thorium reactors have been considered as replacements for uranium-based nuclear reactors, having many economic and environmental advantages. The production of thorium is usually accompanied by the separation of thorium from rare earth elements since the major thorium production mineral, monazite, contains other rare earth elements. The conventional manufacturing process involves a liquid-liquid extraction with organic ligands. There is a need to develop solid state absorbents with good reusability for metal ion separation processes. Porous carbon is particularly interesting due to acid/base resistance. A new absorbent, surface-oxidized wrinkled mesoporous carbon (WMC-O), has been prepared for the selective extraction of thorium ions from rare earth ions. WMC-O shows high selectivity for thorium adsorption due to the 4+ oxidation state of thorium. The distribution coefficient ( Kd) of the WMC-O for thorium from all rare earth elements is 2 orders of magnitude larger than that of surface-oxidized activated carbon (13 × 104 vs 35 × 102 at pH 2.15). WMC-O also shows a high adsorption capacity for pure rare earth ions ( Kd > 3 × 105). These features make WMC-O a promising absorbent for thorium extraction and rare earth ion recovery.

7.
ACS Appl Mater Interfaces ; 10(38): 32818-32827, 2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30211529

ABSTRACT

The transformation of an oxide substrate by its reaction with a chemical precursor during atomic layer deposition (ALD) has not attracted much attention, as films are typically deposited on top of the oxide substrate. However, any modification to the substrate surface can impact the electrical and optical properties of the device. We demonstrate herein the ability of a precursor to react deep within an oxide substrate to form an interfacial layer that is distinct from both the substrate and deposited film. This phenomenon is studied using a scandium precursor, Sc(MeCp)2(Me2pz) (1, MeCp = methylcyclopentadienyl, Me2pz = 3,5-dimethylpyrazolate), and five oxide substrates (SiO2, ZnO, Al2O3, TiO2, and HfO2). In situ Fourier transform infrared (FTIR) spectroscopy shows that at moderate temperatures (∼150 °C) the pyrazolate group of 1 reacts with the surface hydroxyl groups of OH-terminated SiO2 substrates. However, at slightly higher temperatures (≥225 °C) typically used for the ALD of Sc2O3, there is a direct reaction between 1 and the SiO2 layer, in addition to chemisorption at the surface hydroxyl groups. This reaction is sustained by sequential exposures of 1 until an ∼2 nm thick passivating interface layer is formed, indicating that 1 reacts with oxygen derived from SiO2. A shift of the Si 2p core level position, measured by ex situ X-ray photoelectron spectroscopy, is consistent with the formation of a ScSi xO y layer. Similar observations are made following the exposure of a ZnO substrate to 1 at 275 °C. In contrast, Al2O3, TiO2, and HfO2 substrates remain resistant to reaction with 1 under similar conditions, except for a surface reaction occurring in the case of TiO2. These striking observations are attributed to the differences in the electrochemical potentials of the elements comprising the oxide substrates to that of scandium. Precursor 1 can react with SiO2 or ZnO substrates, since the constituent elements of these oxides have less-negative electrochemical potentials than do aluminum, titanium, and hafnium. Additionally, Sc2O3 and surface carbonates are deposited on all substrates by gas-phase reactions between 1 and residual water vapor in the reactor. The extent of gas-phase reactions contributing to film growth is governed by the relative pressure of water vapor in the presence of 1. These results suggest caution when using very reactive, oxophilic precursors such as 1 to avoid misinterpreting unconventional film deposition as that resulting from a standard ALD process.

8.
J Am Chem Soc ; 140(39): 12545-12552, 2018 Oct 03.
Article in English | MEDLINE | ID: mdl-30196697

ABSTRACT

Hydrolytically stable adsorbents are needed for water vapor sorption related applications; however, design principles for porous materials with tunable water sorption behavior are not yet established. Here, we report that a platform of fourth-generation metal-organic materials (MOMs) with rigid frameworks and self-switching pores can adapt their pores to modulate water sorption. This platform is based upon the hydrolytically stable material CMOM-3S, which exhibits bnn topology and is composed of rod building blocks based upon S-mandelate ligands, 4,4-bipyridine ligands, and extraframework triflate anions. Isostructural variants of CMOM-3S were prepared using substituted R-mandelate ligands and exhibit diverse water vapor uptakes (20-67 cm3/g) and pore filling pressures ( P/ P0, 0.55-0.75). [Co2( R-4-Cl-man)2(bpy)3](OTf) (33R) is of particular interest because of its unusual isotherm. Insight into the different water sorption properties of the materials studied was gained from analysis of in situ vibrational spectra, which indicate self-switching pores via perturbation of extraframework triflate anions and mandelate linker ligands to generate distinctive water binding sites. Water vapor adsorption was studied using in situ differential spectra that reveal gradual singlet water occupancy followed by aggregation of water clusters in the channels upon increasing pressure. First-principles calculations identified the water binding sites and provide structural insight on how adsorbed water molecules affect the structures and the binding sites. Stronger triflate hydrogen bonding to the framework along with significant charge redistribution were determined for water binding in 33R. This study provides insight into a new class of fourth-generation (self-switching pores) MOM and the resulting effect upon water vapor sorption properties.

9.
ACS Appl Mater Interfaces ; 10(37): 31784-31794, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30179460

ABSTRACT

Thermal atomic layer etching (ALE) is an emerging technique that involves the sequential removal of monolayers of a film by alternating self-limiting reactions, some of which generate volatile products. Although traditional ALE processes rely on the use of plasma, several thermal ALE processes have recently been developed using hydrogen fluoride (HF) with precursors such as trimethylaluminum (TMA) or tin acetylacetonate. While HF is currently the most effective reagent for ALE, its potential hazards and corrosive nature have motivated searches for alternative chemicals. Herein, we investigate the feasibility of using fluoroform (CHF3) with TMA for the thermal ALE of SiO2 and Al2O3 surfaces and compare it to the established TMA/HF process. A fundamental mechanistic understanding is derived by combining in situ Fourier transform infrared spectroscopy, ex situ X-ray photoemission spectroscopy, ex situ low-energy ion scattering, and ex situ spectroscopic ellipsometry. Specifically, we determine the role of TMA, the dependence of the etch rate on precursor gas pressure, and the formation of a residual fluoride layer. Although CHF3 reacts with TMA-treated oxide surfaces, etching is hindered by the concurrent deposition of a fluorine-containing layer, which makes it unfavorable for etching. Moreover, since fluorine contamination can be deleterious to device performance and its presence in thin films is an inherent problem for established ALE processes using HF, we present a novel method to remove the residual fluorine accumulated during the ALE process by exposure to water vapor. XPS analysis herein reveals that an Al2O3 film etched using TMA/HF at 325 °C contains 25.4 at. % fluorine in the surface region. In situ exposure of this film to water vapor at 325 °C results in ∼90% removal of the fluorine. This simple approach for fluorine removal can easily be applied to ALE-treated films to mitigate contamination and retain surface stoichiometry.

10.
Nat Commun ; 9(1): 1745, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29717138

ABSTRACT

As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr6O4(OH)4(bptc)3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr6O4(OH)8(H2O)4(abtc)2, is capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.

11.
Langmuir ; 34(5): 1932-1940, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29316786

ABSTRACT

The integration of high-purity nano-objects on substrates remains a great challenge for addressing scaling-up issues in nanotechnology. For instance, grafting gold nanoparticles (NPs) on zinc oxide films, a major step process for catalysis or photovoltaic applications, still remains difficult to master. We report a modified photodeposition (P-D) approach that achieves tight control of the NPs size (7.5 ± 3 nm), shape (spherical), purity, and high areal density (3500 ± 10 NPs/µm2) on ZnO films. This deposition method is also compatible with large ZnO surface areas. Combining electronic microscopy and X-ray photoelectron spectroscopy measurements, we demonstrate that growth occurs primarily in confined spaces (between the grains of the ZnO film), resulting in gold NPs embedded within the ZnO surface grains thus establishing a unique NPs/surface arrangement. This modified P-D process offers a powerful method to control nanoparticle morphology and areal density and to achieve strong Au interaction with the metal oxide substrate. This work also highlights the key role of ZnO surface morphology to control the NPs density and their size distribution. Furthermore, we experimentally demonstrate an increase of the ZnO photocatalytic activity due to high densities of Au NPs, opening applications for the decontamination of water or the photoreduction of water for hydrogen production.

12.
J Am Chem Soc ; 140(6): 2363-2372, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29345141

ABSTRACT

Sufficient pore size, appropriate stability, and hierarchical porosity are three prerequisites for open frameworks designed for drug delivery, enzyme immobilization, and catalysis involving large molecules. Herein, we report a powerful and general strategy, linker thermolysis, to construct ultrastable hierarchically porous metal-organic frameworks (HP-MOFs) with tunable pore size distribution. Linker instability, usually an undesirable trait of MOFs, was exploited to create mesopores by generating crystal defects throughout a microporous MOF crystal via thermolysis. The crystallinity and stability of HP-MOFs remain after thermolabile linkers are selectively removed from multivariate metal-organic frameworks (MTV-MOFs) through a decarboxylation process. A domain-based linker spatial distribution was found to be critical for creating hierarchical pores inside MTV-MOFs. Furthermore, linker thermolysis promotes the formation of ultrasmall metal oxide nanoparticles immobilized in an open framework that exhibits high catalytic activity for Lewis acid-catalyzed reactions. Most importantly, this work provides fresh insights into the connection between linker apportionment and vacancy distribution, which may shed light on probing the disordered linker apportionment in multivariate systems, a long-standing challenge in the study of MTV-MOFs.

13.
J Am Chem Soc ; 140(3): 856-859, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29295618

ABSTRACT

Coadsorption of multicomponents in metal-organic framework (MOF) materials can lead to a number of cooperative effects, such as modification of adsorption sites or during transport. In this work, we explore the incorporation of NH3 and H2O into MOFs preloaded with small molecules such as CO, CO2, and SO2. We find that NH3 (or H2O) first displaces a certain amount of preadsorbed molecules in the outer portion of MOF crystallites, and then substantially hinders diffusion. Combining in situ spectroscopy with first-principles calculations, we show that hydrogen bonding between NH3 (or H2O) is responsible for an increase of a factor of 7 and 8 in diffusion barrier of CO and CO2 through the MOF channels. Understanding such cooperative effects is important for designing new strategies to enhance adsorption in nanoporous materials.

14.
Langmuir ; 34(8): 2619-2629, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29381069

ABSTRACT

Despite the success of plasma-enhanced atomic layer deposition (PEALD) in depositing quality silicon nitride films, a fundamental understanding of the growth mechanism has been difficult to obtain because of lack of in situ characterization to probe the surface reactions noninvasively and the complexity of reactions induced/enhanced by the plasma. These challenges have hindered the direct observation of intermediate species formed during the reactions. We address this challenge by examining the interaction of Ar plasma using atomically flat, monohydride-terminated Si(111) as a well-defined model surface and focusing on the initial PEALD with aminosilanes. In situ infrared and X-ray photoelectron spectroscopy reveals that an Ar plasma induces desorption of H atoms from H-Si(111) surfaces, leaving Si dangling bonds, and that the reaction of di-sec-butylaminosilane (DSBAS) with Ar plasma-treated surfaces requires the presence of both active sites (Si dangling bonds) and Si-H; there is no reaction on fully H-terminated or activated surfaces. By contrast, high-quality hydrofluoric acid-etched Si3N4 surfaces readily react with DSBAS, resulting in the formation of O-SiH3. However, the presence of back-bonded oxygen in O-SiH3 inhibits H desorption by Ar or N2 plasma, presumably because of stabilization of H against ion-induced desorption. Consequently, there is no reaction of adsorbed aminosilanes even after extensive Ar or N2 plasma treatments; a thermal process is necessary to partially remove H, thereby promoting the formation of active sites. These observations are consistent with a mechanism requiring the presence of both undercoordinated nitrogen and/or dangling bonds and unreacted surface hydrogen. Because active sites are involved, the PEALD process is found to be sensitive to the duration of the plasma exposure treatment and the purge time, during which passivation of these sites can occur.

15.
J Phys Chem B ; 122(2): 897-903, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29069545

ABSTRACT

Single charge electronics offer a way for disruptive technology in nanoelectronics. Coulomb blockade is a realistic way for controlling the electric current through a device with the accuracy of one electron. In such devices the current exhibits a step-like increase upon bias which reflects the discrete nature of the fundamental charge. We have assembled a double tunnel junction on an oxide-free silicon substrate that exhibits Coulomb staircase characteristics using gold nanoparticles (AuNPs) as Coulomb islands. The first tunnel junction is an insulating layer made of a grafted organic monolayer (GOM) developed for this purpose. The GOM also serves for attaching AuNPs covalently. The second tunnel junction is made by the tip of an STM. We show that this device exhibits reproducible Coulomb blockade I-V curves at 40 K in vacuum. We also show that depending on the doping of the silicon substrate, the whole Coulomb staircase can be adjusted. We have developed a simulation approach based on the orthodox theory that was completed by calculating the bias dependent tunnel barriers and by including an accurate calculation of the band bending. This model accounts for the experimental data and the doping dependence of Coulomb oscillations. This study opens new perspectives toward designing new kind of single electron transistors (SET) based on this dependence of the Coulomb staircase with the charge carrier concentration.

16.
Nanoscale ; 9(48): 19398-19407, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29210416

ABSTRACT

Observation of energy transfer (ET) from multiexcitonic (MX) complexes in nanocrystal quantum dots (NQDs) has been severely restricted due to efficient nonradiative Auger recombination leading to very low MX emission quantum yields. Here we employed "giant" CdSe/CdS NQDs with suppressed Auger recombination to study ET of biexcitons (BX) and charged excitons (trions) into Si substrate. Photoluminescence (PL) measurements of (sub)monolayers of gNQDs controllably assembled on various interacting surfaces and augmented by single gNQD's imaging reveal appearance of BX spectral signatures and progressive acceleration of PL lifetimes of all excitonic species on Si substrates. From statistical analysis of a large number of PL lifetime traces, representative exciton, trion and BX ET efficiencies are measured as ∼75%, 55% and 45% respectively. Detailed analysis of the MX's radiative rates demonstrate the crucial role of the radiative (waveguide) ET in maintaining high overall transfer efficiency despite the prevalent Auger recombination. Our observations point towards practical utilization of MX-bearing nanocrystals in future optoelectronics architectures.

17.
Langmuir ; 33(41): 11086-11093, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28950064

ABSTRACT

Al/CuO energetic structure are attractive materials due to their high thermal output and propensity to produce gas. They are widely used to bond components or as next generation of MEMS igniters. In such systems, the reaction process is largely dominated by the outward migration of oxygen atoms from the CuO matrix toward the aluminum layers, and many recent studies have already demonstrated that the interfacial nanolayer between the two reactive layers plays a major role in the material properties. Here we demonstrate that the ALD deposition of a thin ZnO layer on the CuO prior to Al deposition (by sputtering) leads to a substantial increase in the efficiency of the overall reaction. The CuO/ZnO/Al foils generate 98% of their theoretical enthalpy within a single reaction at 900 °C, whereas conventional ZnO-free CuO/Al foils produce only 78% of their theoretical enthalpy, distributed over two distinct reaction steps at 550 °C and 850 °C. Combining high-resolution transmission electron microscopy, X-ray diffraction, and differential scanning calorimetry, we characterized the successive formation of a thin zinc aluminate (ZnAl2O4) and zinc oxide interfacial layers, which act as an effective barrier layer against oxygen diffusion at low temperature.

18.
ACS Appl Mater Interfaces ; 9(42): 37476-37483, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28959877

ABSTRACT

Metal oxide thin films are ubiquitous in technological applications. Often, multiple metal components are used to achieve desired film properties for specific functions. Solution deposition offers an attractive route for producing these multimetal oxides because it allows for careful control of film composition through the manipulation of precursor stoichiometry. Although it has been generally assumed that homogeneous precursor solutions yield homogeneous thin films, we recently reported evidence of nonuniform electron density profiles in aqueous-deposited films. Herein, we show that nonuniform electron densities in lanthanum zirconium oxide (LZO) thin films are the result of inhomogeneous distributions of metal components. Specifically, La aggregates at the film surface, whereas Zr is relatively evenly distributed throughout single-layer films. This inhomogeneous metal distribution persists in stacked multilayer films, resulting in La-rich interfaces between the sequentially deposited layers. Testing of metal-insulator-semiconductor devices fabricated from single and multilayer LZO films shows that multilayer films have higher dielectric constants, indicating that La-rich interfaces in multilayer films do not detrimentally impact film properties. We attribute the enhanced dielectric properties of multilayer films to greater condensation and densification relative to single-layer films, and these results suggest that multilayer films may be preferred for device applications despite the presence of layering artifacts.

19.
Nat Commun ; 8(1): 485, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28883637

ABSTRACT

Effective capture of radioactive organic iodides from nuclear waste remains a significant challenge due to the drawbacks of current adsorbents such as low uptake capacity, high cost, and non-recyclability. We report here a general approach to overcome this challenge by creating radioactive organic iodide molecular traps through functionalization of metal-organic framework materials with tertiary amine-binding sites. The molecular trap exhibits a high CH3I saturation uptake capacity of 71 wt% at 150 °C, which is more than 340% higher than the industrial adsorbent Ag0@MOR under identical conditions. These functionalized metal-organic frameworks also serve as good adsorbents at low temperatures. Furthermore, the resulting adsorbent can be recycled multiple times without loss of capacity, making recyclability a reality. In combination with its chemical and thermal stability, high capture efficiency and low cost, the adsorbent demonstrates promise for industrial radioactive organic iodides capture from nuclear waste. The capture mechanism was investigated by experimental and theoretical methods.Capturing radioactive organic iodides from nuclear waste is important for safe nuclear energy usage, but remains a significant challenge. Here, Li and co-workers fabricate a stable metal-organic framework functionalized with tertiary amine groups that exhibits high capacities for radioactive organic iodides uptake.

20.
Nat Commun ; 8(1): 340, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28835704

ABSTRACT

Controlling the charge transfer between a semiconducting catalyst carrier and the supported transition metal active phase represents an elite strategy for fine turning the electronic structure of the catalytic centers, hence their activity and selectivity. These phenomena have been theoretically and experimentally elucidated for oxide supports but remain poorly understood for carbons due to their complex nanoscale structure. Here, we combine advanced spectroscopy and microscopy on model Pd/C samples to decouple the electronic and surface chemistry effects on catalytic performance. Our investigations reveal trends between the charge distribution at the palladium-carbon interface and the metal's selectivity for hydrogenation of multifunctional chemicals. These electronic effects are strong enough to affect the performance of large (~5 nm) Pd particles. Our results also demonstrate how simple thermal treatments can be used to tune the interfacial charge distribution, hereby providing a strategy to rationally design carbon-supported catalysts.Control over charge transfer in carbon-supported metal nanoparticles is essential for designing new catalysts. Here, the authors show that thermal treatments effectively tune the interfacial charge distribution in carbon-supported palladium catalysts with consequential changes in hydrogenation performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...