Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Adv ; 8(47): eadd9938, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36427315

ABSTRACT

Soft-bodied cephalopods such as octopuses are exceptionally intelligent invertebrates with a highly complex nervous system that evolved independently from vertebrates. Because of elevated RNA editing in their nervous tissues, we hypothesized that RNA regulation may play a major role in the cognitive success of this group. We thus profiled messenger RNAs and small RNAs in three cephalopod species including 18 tissues of the Octopus vulgaris. We show that the major RNA innovation of soft-bodied cephalopods is an expansion of the microRNA (miRNA) gene repertoire. These evolutionarily novel miRNAs were primarily expressed in adult neuronal tissues and during the development and had conserved and thus likely functional target sites. The only comparable miRNA expansions happened, notably, in vertebrates. Thus, we propose that miRNAs are intimately linked to the evolution of complex animal brains.


Subject(s)
MicroRNAs , Octopodiformes , Animals , Octopodiformes/genetics , MicroRNAs/genetics , Brain , Seafood , RNA, Messenger
2.
Mol Biol Evol ; 39(1)2022 01 07.
Article in English | MEDLINE | ID: mdl-34865078

ABSTRACT

Whole-genome duplications (WGDs) have long been considered the causal mechanism underlying dramatic increases to morphological complexity due to the neo-functionalization of paralogs generated during these events. Nonetheless, an alternative hypothesis suggests that behind the retention of most paralogs is not neo-functionalization, but instead the degree of the inter-connectivity of the intended gene product, as well as the mode of the WGD itself. Here, we explore both the causes and consequences of WGD by examining the distribution, expression, and molecular evolution of microRNAs (miRNAs) in both gnathostome vertebrates as well as chelicerate arthropods. We find that although the number of miRNA paralogs tracks the number of WGDs experienced within the lineage, few of these paralogs experienced changes to the seed sequence, and thus are functionally equivalent relative to their mRNA targets. Nonetheless, in gnathostomes, although the retention of paralogs following the 1R autotetraploidization event is similar across the two subgenomes, the paralogs generated by the gnathostome 2R allotetraploidization event are retained in higher numbers on one subgenome relative to the second, with the miRNAs found on the preferred subgenome showing both higher expression of mature miRNA transcripts and slower molecular evolution of the precursor miRNA sequences. Importantly, WGDs do not result in the creation of miRNA novelty, nor do WGDs correlate to increases in complexity. Instead, it is the number of miRNA seed sequences in the genome itself that not only better correlate to instances in complexification, but also mechanistically explain why complexity increases when new miRNA families are established.


Subject(s)
Gene Duplication , Genome , MicroRNAs , Animals , Evolution, Molecular , MicroRNAs/genetics , Phylogeny
3.
Nucleic Acids Res ; 50(D1): D204-D210, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34850127

ABSTRACT

We describe an update of MirGeneDB, the manually curated microRNA gene database. Adhering to uniform and consistent criteria for microRNA annotation and nomenclature, we substantially expanded MirGeneDB with 30 additional species representing previously missing metazoan phyla such as sponges, jellyfish, rotifers and flatworms. MirGeneDB 2.1 now consists of 75 species spanning over ∼800 million years of animal evolution, and contains a total number of 16 670 microRNAs from 1549 families. Over 6000 microRNAs were added in this update using ∼550 datasets with ∼7.5 billion sequencing reads. By adding new phylogenetically important species, especially those relevant for the study of whole genome duplication events, and through updating evolutionary nodes of origin for many families and genes, we were able to substantially refine our nomenclature system. All changes are traceable in the specifically developed MirGeneDB version tracker. The performance of read-pages is improved and microRNA expression matrices for all tissues and species are now also downloadable. Altogether, this update represents a significant step toward a complete sampling of all major metazoan phyla, and a widely needed foundation for comparative microRNA genomics and transcriptomics studies. MirGeneDB 2.1 is part of RNAcentral and Elixir Norway, publicly and freely available at http://www.mirgenedb.org/.


Subject(s)
Computational Biology , Databases, Genetic , Evolution, Molecular , Genomics , Animals , Humans , MicroRNAs/classification , MicroRNAs/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...