Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Spinal Cord Med ; 41(5): 503-517, 2018 09.
Article in English | MEDLINE | ID: mdl-28784042

ABSTRACT

OBJECTIVE: Our goal was to determine if pairing transcranial direct current stimulation (tDCS) with rehabilitation for two weeks could augment adaptive plasticity offered by these residual pathways to elicit longer-lasting improvements in motor function in incomplete spinal cord injury (iSCI). DESIGN: Longitudinal, randomized, controlled, double-blinded cohort study. SETTING: Cleveland Clinic Foundation, Cleveland, Ohio, USA. PARTICIPANTS: Eight male subjects with chronic incomplete motor tetraplegia. INTERVENTIONS: Massed practice (MP) training with or without tDCS for 2 hrs, 5 times a week. OUTCOME MEASURES: We assessed neurophysiologic and functional outcomes before, after and three months following intervention. Neurophysiologic measures were collected with transcranial magnetic stimulation (TMS). TMS measures included excitability, representational volume, area and distribution of a weaker and stronger muscle motor map. Functional assessments included a manual muscle test (MMT), upper extremity motor score (UEMS), action research arm test (ARAT) and nine hole peg test (NHPT). RESULTS: We observed that subjects receiving training paired with tDCS had more increased strength of weak proximal (15% vs 10%), wrist (22% vs 10%) and hand (39% vs. 16%) muscles immediately and three months after intervention compared to the sham group. Our observed changes in muscle strength were related to decreases in strong muscle map volume (r=0.851), reduced weak muscle excitability (r=0.808), a more focused weak muscle motor map (r=0.675) and movement of weak muscle motor map (r=0.935). CONCLUSION: Overall, our results encourage the establishment of larger clinical trials to confirm the potential benefit of pairing tDCS with training to improve the effectiveness of rehabilitation interventions for individuals with SCI. TRIAL REGISTRATION: NCT01539109.


Subject(s)
Exercise Therapy/methods , Quadriplegia/therapy , Spinal Cord Injuries/therapy , Transcranial Direct Current Stimulation/methods , Humans , Male , Middle Aged , Motor Activity , Muscle Contraction , Neurological Rehabilitation/methods , Pilot Projects , Quadriplegia/rehabilitation , Recovery of Function , Spinal Cord Injuries/rehabilitation
2.
J Stroke Cerebrovasc Dis ; 25(4): 927-37, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26851211

ABSTRACT

OBJECTIVE: Noninvasive brain stimulation (NIBS) can augment functional recovery following stroke; however, the technique lacks regulatory approval. Low enrollment in NIBS clinical trials is a key roadblock. Here, we pursued evidence to support the prevailing opinion that enrollment in trials of NIBS is even lower than enrollment in trials of invasive, deep brain stimulation (DBS). METHODS: We compared 2 clinical trials in stroke conducted within a single urban hospital system, one employing NIBS and the other using DBS, (1) to identify specific criteria that generate low enrollment rates for NIBS and (2) to devise strategies to increase recruitment with guidance from DBS. RESULTS: Notably, we found that enrollment in the NIBS case study was 5 times lower (2.8%) than the DBS trial (14.5%) (χ(2) = 20.815, P < .0001). Although the number of candidates who met the inclusion criteria was not different (χ(2) = .04, P < .841), exclusion rates differed significantly between the 2 studies (χ(2) = 21.354, P < .0001). Beyond lack of interest, higher exclusion rates in the NIBS study were largely due to exclusion criteria that were not present in the DBS study, including restrictions for recurrent strokes, seizures, and medications. CONCLUSIONS: Based on our findings, we conclude and suggest that by (1) establishing criteria specific to each NIBS modality, (2) adjusting exclusion criteria based on guidance from DBS, and (3) including patients with common contraindications based on a probability of risk, we may increase enrollment and hence significantly impact the feasibility and generalizability of NIBS paradigms, particularly in stroke.


Subject(s)
Brain/physiology , Deep Brain Stimulation/methods , Recovery of Function/physiology , Stroke/therapy , Transcranial Magnetic Stimulation/methods , Treatment Outcome , Adult , Aged , Clinical Trials as Topic , Female , Humans , Male , Middle Aged , Pain/etiology , Pain Management , Stroke/complications , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...