Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(3): 105675, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272223

ABSTRACT

The O-glycoprotein Mucin-2 (MUC2) forms the protective colon mucus layer. While animal models have demonstrated the importance of Muc2, few studies have explored human MUC2 in similar depth. Recent studies have revealed that secreted MUC2 is bound to human feces. We hypothesized human fecal MUC2 (HF-MUC2) was accessible for purification and downstream structural and functional characterization. We tested this via histologic and quantitative imaging on human fecal sections; extraction from feces for proteomic and O-glycomic characterization; and functional studies via growth and metabolic assays in vitro. Quantitative imaging of solid fecal sections showed a continuous mucus layer of varying thickness along human fecal sections with barrier functions intact. Lectin profiling showed HF-MUC2 bound several lectins but was weak to absent for Ulex europaeus 1 (α1,2 fucose-binding) and Sambucus nigra agglutinin (α2,6 sialic acid-binding), and did not have obvious b1/b2 barrier layers. HF-MUC2 separated by electrophoresis showed high molecular weight glycoprotein bands (∼1-2 MDa). Proteomics and Western analysis confirmed the enrichment of MUC2 and potential MUC2-associated proteins in HF-MUC2 extracts. MUC2 O-glycomics revealed diverse fucosylation, moderate sialylation, and little sulfation versus porcine colonic MUC2 and murine fecal Muc2. O-glycans were functional and supported the growth of Bacteroides thetaiotaomicron (B. theta) and short-chain fatty acid (SCFA) production in vitro. MUC2 could be similarly analyzed from inflammatory bowel disease stools, which displayed an altered glycomic profile and differential growth and SCFA production by B. theta versus healthy samples. These studies describe a new non-invasive platform for human MUC2 characterization in health and disease.


Subject(s)
Colon , Feces , Proteomics , Animals , Humans , Mice , Colon/metabolism , Glycoproteins/metabolism , Intestinal Mucosa/metabolism , Mucin-2/genetics , Mucin-2/metabolism , Mucus/metabolism , Swine , Male , Mice, Inbred C57BL , Gastrointestinal Microbiome
2.
Front Immunol ; 14: 1211336, 2023.
Article in English | MEDLINE | ID: mdl-37359538

ABSTRACT

The colonic mucus bilayer is the first line of innate host defense that at the same time houses and nourishes the commensal microbiota. The major components of mucus secreted by goblet cells are MUC2 mucin and the mucus-associated protein, FCGBP (IgGFc-binding protein). In this study, we determine if FCGBP and MUC2 mucin were biosynthesized and interacted together to spatially enhance the structural integrity of secreted mucus and its role in epithelial barrier function. MUC2 and FCGBP were coordinately regulated temporally in goblet-like cells and in response to a mucus secretagogue but not in CRISPR-Cas9 gene-edited MUC2 KO cells. Whereas ~85% of MUC2 was colocalized with FCGBP in mucin granules, ~50% of FCGBP was diffusely distributed in the cytoplasm of goblet-like cells. STRING-db v11 analysis of the mucin granule proteome revealed no protein-protein interaction between MUC2 and FCGBP. However, FCGBP interacted with other mucus-associated proteins. FCGBP and MUC2 interacted via N-linked glycans and were non-covalently bound in secreted mucus with cleaved low molecular weight FCGBP fragments. In MUC2 KO, cytoplasmic FCGBP was significantly increased and diffusely distributed in wounded cells that healed by enhanced proliferation and migration within 2 days, whereas, in WT cells, MUC2 and FCGBP were highly polarized at the wound margin which impeded wound closure by 6 days. In DSS colitis, restitution and healed lesions in Muc2+/+ but not Muc2-/- littermates, were accompanied by a rapid increase in Fcgbp mRNA and delayed protein expression at 12- and 15-days post DSS, implicating a potential novel endogenous protective role for FCGBP in wound healing to maintain epithelial barrier function.


Subject(s)
Colitis , Mucins , Colitis/metabolism , Goblet Cells/metabolism , Mucins/metabolism , Wound Healing , Animals , Mice
3.
Gastroenterology ; 164(2): 228-240, 2023 02.
Article in English | MEDLINE | ID: mdl-36183751

ABSTRACT

BACKGROUND & AIMS: Inflammatory bowel diseases (IBD) are affected by dietary factors, including nondigestible carbohydrates (fibers), which are fermented by colonic microbes. Fibers are overall beneficial, but not all fibers are alike, and some patients with IBD report intolerance to fiber consumption. Given reproducible evidence of reduced fiber-fermenting microbes in patients with IBD, we hypothesized that fibers remain intact in select patients with reduced fiber-fermenting microbes and can then bind host cell receptors, subsequently promoting gut inflammation. METHODS: Colonic biopsies cultured ex vivo and cell lines in vitro were incubated with oligofructose (5 g/L), or fermentation supernatants (24-hour anaerobic fermentation) and immune responses (cytokine secretion [enzyme-linked immunosorbent assay/meso scale discovery] and expression [quantitative polymerase chain reaction]) were assessed. Influence of microbiota in mediating host response was examined and taxonomic classification of microbiota was conducted with Kraken2 and metabolic profiling by HUMAnN2, using R software. RESULTS: Unfermented dietary ß-fructan fibers induced proinflammatory cytokines in a subset of IBD intestinal biopsies cultured ex vivo, and immune cells (including peripheral blood mononuclear cells). Results were validated in an adult IBD randomized controlled trial examining ß-fructan supplementation. The proinflammatory response to intact ß-fructan required activation of the NLRP3 and TLR2 pathways. Fermentation of ß-fructans by human gut whole microbiota cultures reduced the proinflammatory response, but only when microbes were collected from patients without IBD or patients with inactive IBD. Fiber-induced immune responses correlated with microbe functions, luminal metabolites, and dietary fiber avoidance. CONCLUSION: Although fibers are typically beneficial in individuals with normal microbial fermentative potential, some dietary fibers have detrimental effects in select patients with active IBD who lack fermentative microbe activities. The study is publicly accessible at the U.S. National Institutes of Health database (clinicaltrials.gov identification number NCT02865707).


Subject(s)
Fructans , Inflammatory Bowel Diseases , Adult , Humans , Leukocytes, Mononuclear , Intestines , Dietary Fiber , Inflammation
4.
PLoS One ; 17(9): e0275508, 2022.
Article in English | MEDLINE | ID: mdl-36166464

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0058671.].

5.
Front Immunol ; 13: 900553, 2022.
Article in English | MEDLINE | ID: mdl-35795683

ABSTRACT

Gasdermins (GSDMs) are a group of proteins that are cleaved by inflammatory caspases to induce pore formation in the plasma membrane to cause membrane permeabilization and lytic cell death or pyroptosis. All GSDMs share a conserved structure, containing a cytotoxic N-terminal (NT) pore-forming domain and a C-terminal (CT) repressor domain. Entamoeba histolytica (Eh) in contact with macrophages, triggers outside-in signaling to activate inflammatory caspase-4/1 via the noncanonical and canonical pathway to promote cleavage of gasdermin D (GSDMD). Cleavage of GSDMD removes the auto-inhibition that masks the active pore-forming NT domain in the full-length protein by interactions with GSDM-CT. The cleaved NT-GSDMD monomers then oligomerize to form pores in the plasma membrane to facilitate the release of IL-1ß and IL-18 with a measured amount of pyroptosis. Pyroptosis is an effective way to counteract intracellular parasites, which exploit replicative niche to avoid killing. To date, most GSDMs have been verified to perform pore-forming activity and GSDMD-induced pyroptosis is rapidly emerging as a mechanism of anti-microbial host defence. Here, we review our comprehensive and current knowledge on the expression, activation, biological functions, and regulation of GSDMD cleavage with emphases on physiological scenario and related dysfunctions of each GSDM member as executioner of cell death, cytokine secretion and inflammation against Eh and other protozoan parasitic infections.


Subject(s)
Entamoeba histolytica , Parasites , Animals , Caspase 1 , Cell Membrane , Pyroptosis
6.
PLoS Pathog ; 18(3): e1010415, 2022 03.
Article in English | MEDLINE | ID: mdl-35303042

ABSTRACT

A hallmark of Entamoeba histolytica (Eh) invasion in the gut is acute inflammation dominated by the secretion of pro-inflammatory cytokines TNF-α and IL-1ß. This is initiated when Eh in contact with macrophages in the lamina propria activates caspase-1 by recruiting the NLRP3 inflammasome complex in a Gal-lectin and EhCP-A5-dependent manner resulting in the maturation and secretion of IL-1ß and IL-18. Here, we interrogated the requirements and mechanisms for Eh-induced caspase-4/1 activation in the cleavage of gasdermin D (GSDMD) to regulate bioactive IL-1ß release in the absence of cell death in human macrophages. Unlike caspase-1, caspase-4 activation occurred as early as 10 min that was dependent on Eh Gal-lectin and EhCP-A5 binding to macrophages. By utilizing CRISPR-Cas9 gene edited CASP4/1, NLRP3 KO and ASC-def cells, caspase-4 activation was found to be independent of the canonical NLRP3 inflammasomes. In CRISPR-Cas9 gene edited CASP1 macrophages, caspase-4 activation was significantly up regulated that enhanced the enzymatic cleavage of GSDMD at the same cleavage site as caspase-1 to induce GSDMD pore formation and sustained bioactive IL-1ß secretion. Eh-induced IL-1ß secretion was independent of pyroptosis as revealed by pharmacological blockade of GSDMD pore formation and in CRISPR-Cas9 gene edited GSDMD KO macrophages. This was in marked contrast to the potent positive control, lipopolysaccharide + Nigericin that induced high expression of predominantly caspase-1 that efficiently cleaved GSDMD with high IL-1ß secretion/release associated with massive cell pyroptosis. These results reveal that Eh triggered "hyperactivated macrophages" allowed caspase-4 dependent cleavage of GSDMD and IL-1ß secretion to occur in the absence of pyroptosis that may play an important role in disease pathogenesis.


Subject(s)
Entamoeba histolytica , Caspase 1/genetics , Caspase 1/metabolism , Caspases, Initiator/metabolism , Entamoeba histolytica/metabolism , Humans , Interleukin-1beta , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Pyroptosis
7.
Int J Parasitol ; 52(5): 285-292, 2022 04.
Article in English | MEDLINE | ID: mdl-35077730

ABSTRACT

Giardia duodenalis cysteine proteases have been identified as key virulence factors and have been implicated in alterations to intestinal goblet cell activity and mucus production during Giardia infection. The present findings demonstrate a novel mechanism by which Giardia cysteine proteases modulate goblet cell activity via cleavage and activation of protease-activated receptor 2. Giardia duodenalis (assemblage A) increased MUC2 mucin gene expression in human colonic epithelial cells in a manner dependent upon both protease-activated receptor 2 activation and Giardia cysteine protease activity. Protease-activated receptor 2 cleavage within the N-terminal activation domain by Giardia proteases was confirmed using a nano-luciferase tagged recombinant protease-activated receptor 2. In keeping with these observations, the synthetic protease-activated receptor 2-activating peptide 2fLIGRLO-amide increased Muc2 gene expression in a time-dependent manner. Calcium chelation and inhibition of the ERK1/2 mitogen activated protein kinase pathway inhibited Muc2 upregulation during Giardia infection, consistent with canonical protease-activated receptor 2 signaling pathways. Giardia cysteine proteases cleaved both recombinant protease-activated receptor 1 and protease-activated receptor 2 within their extracellular activation domains with isolate-dependent efficiency that correlated with the production of cysteine protease activity. Protease-activated receptors represent a novel target for Giardia cysteine proteases, and these findings demonstrate that protease-activated receptor 2 can regulate mucin gene expression in intestinal goblet cells.


Subject(s)
Cysteine Proteases , Giardia lamblia , Mucins , Receptor, PAR-2 , Cysteine Proteases/genetics , Cysteine Proteases/metabolism , Gene Expression , Giardia lamblia/enzymology , Giardia lamblia/genetics , Goblet Cells/metabolism , Humans , Mucins/metabolism , Receptor, PAR-2/genetics , Receptor, PAR-2/metabolism
8.
Front Cell Infect Microbiol ; 11: 748404, 2021.
Article in English | MEDLINE | ID: mdl-34595137

ABSTRACT

Protozoan parasites have led to worldwide devastation because of their ability to cause infectious diseases. They have evolved as successful pathogens in part because of their remarkable and sophisticated ways to evade innate host defenses. This holds true for both intracellular and extracellular parasites that deploy multiple strategies to circumvent innate host defenses for their survival. The different strategies protozoan parasites use include hijacking the host cellular signaling pathways and transcription factors. In particular, the nuclear factor-κB (NF-κB) pathway seems to be an attractive target for different pathogens owing to their central role in regulating prompt innate immune responses in host defense. NF-κB is a ubiquitous transcription factor that plays an indispensable role not only in regulating immediate immune responses against invading pathogens but is also a critical regulator of cell proliferation and survival. The major immunomodulatory components include parasite surface and secreted proteins/enzymes and stimulation of host cells intracellular pathways and inflammatory caspases that directly or indirectly interfere with the NF-κB pathway to thwart immune responses that are directed for containment and/or elimination of the pathogen. To showcase how protozoan parasites exploits the NF-κB signaling pathway, this review highlights recent advances from Entamoeba histolytica and other protozoan parasites in contact with host cells that induce outside-in and inside-out signaling to modulate NF-κB in disease pathogenesis and survival in the host.


Subject(s)
Entamoeba histolytica , Parasites , Animals , Entamoeba histolytica/metabolism , Immunity, Innate , NF-kappa B/metabolism , Parasites/metabolism , Signal Transduction
9.
Am J Physiol Gastrointest Liver Physiol ; 321(5): G489-G499, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34494458

ABSTRACT

Goblet cells are specialized for the production and secretion of MUC2 glycoproteins that forms a thick layer covering the mucosal epithelium as a protective barrier against noxious substances and invading microbes. High MUC2 mucin biosynthesis induces endoplasmic reticulum (ER) stress and apoptosis in goblet cells during inflammatory and infectious diseases. Autophagy is an intracellular degradation process required for maintenance of intestinal homeostasis. In this study, we hypothesized that autophagy was triggered during high MUC2 mucin biosynthesis from colonic goblet cells to cope with metabolic stress. To interrogate this, we analyzed the autophagy process in high MUC2-producing human HT29-H and a clone HT29-L silenced for MUC2 expression by lentivirus-mediated shRNA, and WT and CRISPR/Cas9 MUC2 KO LS174T cells. Autophagy was constitutively increased in high MUC2-producing cells characterized by elevated pULK1S555 expression and increased numbers of autophagosomes as compared with MUC2 silenced or gene edited cells. Similarly, colonoids from Muc2+/+ but not Muc2-/- littermates differentiated into goblet cells showed increased autophagy. IL-22 treatment corrected misfolded MUC2 protein and alleviated the autophagy process in LS174T cells. This study highlights that autophagy plays an essential role in goblet cells to survive during high mucin biosynthesis by regulating cellular homeostasis.NEW & NOTEWORTHY It is unclear how colonic goblet cells survive by producing high output MUC2 mucin that triggers endoplasmic stress by misfolded MUC2 proteins. To cope with metabolic stress, we interrogated if autophagy played an essential role in regulating cellular homeostasis. Indeed, high MUC2 mucin biosynthesis dysregulated autophagy processes that was regulated by IL-22 to maintain gut barrier innate host defenses.


Subject(s)
Autophagy , Colon/metabolism , Endoplasmic Reticulum Stress , Energy Metabolism , Goblet Cells/metabolism , Mucin-2/biosynthesis , Animals , Autophagy/drug effects , Autophagy-Related Protein-1 Homolog/metabolism , Colon/drug effects , Colon/ultrastructure , Endoplasmic Reticulum Stress/drug effects , Energy Metabolism/drug effects , Female , Goblet Cells/drug effects , Goblet Cells/ultrastructure , HT29 Cells , Humans , Interleukins/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Mucin-2/genetics , Phosphorylation , Protein Folding , Signal Transduction , Interleukin-22
10.
PLoS Pathog ; 17(9): e1009936, 2021 09.
Article in English | MEDLINE | ID: mdl-34499701

ABSTRACT

While Entamoeba histolytica (Eh)-induced pro-inflammatory responses are critical in disease pathogenesis, the downstream signaling pathways that subsequently dampens inflammation and the immune response remains unclear. Eh in contact with macrophages suppresses NF-κB signaling while favoring NLRP3-dependent pro-inflammatory cytokine production by an unknown mechanism. Cullin-1 and cullin-5 (cullin-1/5) assembled into a multi-subunit RING E3 ubiquitin ligase complex are substrates for neddylation that regulates the ubiquitination pathway important in NF-κB activity and pro-inflammatory cytokine production. In this study, we showed that upon live Eh contact with human macrophages, cullin-1/4A/4B/5 but not cullin-2/3, were degraded within 10 minutes. Similar degradation of cullin-1/5 were observed from colonic epithelial cells and proximal colonic loops tissues of mice inoculated with live Eh. Degradation of cullin-1/5 was dependent on Eh-induced activation of caspase-1 via the NLRP3 inflammasome. Unlike cullin-4B, the degradation of cullin-4A was partially dependent on caspase-1 and was inhibited with a pan caspase inhibitor. Cullin-1/5 degradation was dependent on Eh cysteine proteinases EhCP-A1 and EhCP-A4, but not EhCP-A5, based on pharmacological inhibition of the cysteine proteinases and EhCP-A5 deficient parasites. siRNA silencing of cullin-1/5 decreased the phosphorylation of pIκ-Bα in response to Eh and LPS stimulation and downregulated NF-κB-dependent TNF-α mRNA expression and TNF-α and MCP-1 pro-inflammatory cytokine production. These results unravel a unique outside-in strategy employed by Eh to attenuate NF-κB-dependent pro-inflammatory responses via NLRP3 activation of caspase-1 that degraded cullin-1/5 from macrophages.


Subject(s)
Caspase 1/metabolism , Cullin Proteins/metabolism , Entamoebiasis/metabolism , Macrophages/metabolism , NF-kappa B/metabolism , Animals , Entamoeba histolytica/immunology , Entamoeba histolytica/metabolism , Entamoebiasis/immunology , Humans , Mice , Signal Transduction/physiology
11.
Mucosal Immunol ; 14(5): 1038-1054, 2021 09.
Article in English | MEDLINE | ID: mdl-33963264

ABSTRACT

The mechanism whereby Entamoeba histolytica (Eh) binding with macrophages at the intercellular junction triggers aggressive pro-inflammatory responses in disease pathogenesis is not well understood. The host intracellular protein degradation process autophagy and its regulatory proteins are involved in maintenance of cellular homeostasis and excessive inflammatory responses. In this study we unraveled how Eh hijacks the autophagy process in macrophages to dysregulate pro-inflammatory responses. Direct contact of live Eh with macrophages activated caspase-6 that induced rapid proteolytic degradation of the autophagy ATG16L1 protein complex independent of NLRP3 inflammasome and caspase-3/8 activation. Crohn's disease susceptible ATG16L1 T300A variant was highly susceptible to Eh-mediated degradation that augmented pro-inflammatory cytokines in mice. Quantitative proteomics revealed downregulation of autophagy and vesicle-mediated transport and upregulation of cysteine-type endopeptidase pathways in response to Eh. We conclude during Eh-macrophage outside-in signaling, ATG16L1 protein complex plays an overlooked regulatory role in shaping the pro-inflammatory landscape in amebiasis.


Subject(s)
Autophagy , Entamoeba histolytica/physiology , Entamoebiasis/etiology , Entamoebiasis/metabolism , Macrophages/immunology , Macrophages/metabolism , Signal Transduction , Animals , Autophagy/immunology , Biomarkers , Caspases/genetics , Caspases/metabolism , Cell Line , Computational Biology , Disease Models, Animal , Disease Susceptibility , Entamoebiasis/pathology , Gene Expression Regulation , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Humans , Macrophages/parasitology , Mice , Proteome , Proteomics/methods , RNA Interference , RNA, Small Interfering/genetics
13.
Cell Mol Gastroenterol Hepatol ; 11(1): 77-98, 2021.
Article in English | MEDLINE | ID: mdl-32659381

ABSTRACT

BACKGROUND & AIMS: Alterations in intestinal MUC2 mucin and microbial diversity are closely linked with important intestinal pathologies; however, their impact on each other and on intestinal pathogenesis has been vaguely characterized. Therefore, it was of interest in this study to delineate distinct and cooperative function of commensal microbiota and the Muc2 mucus barrier in maintaining intestinal epithelial barrier function. METHODS: Muc2 mucin deficient (Muc2-/-) and sufficient (Muc2+/+) littermates were used as a model for assessing the role of Muc2. To quantify the role of the microbiota in disease pathogenesis, Muc2+/+ and Muc2-/- littermates were treated with a cocktail of antibiotics that reduced indigenous bacteria, and then fecal transplanted with littermate stool and susceptibility to dextran sulphate sodium (DSS) quantified. RESULTS: Although, Muc2+/+ and Muc2-/- littermates share similar phyla distribution as evidenced by 16S sequencing they maintain their distinctive gastrointestinal phenotypes. Basally, Muc2-/- showed low-grade colonic inflammation with high populations of inflammatory and tolerogenic immune cells that became comparable to Muc2+/+ littermates following antibiotic treatment. Antibiotics treatment rendered Muc2+/+ but not Muc2-/- littermates highly susceptibility to DSS-induced colitis that was ILC3 dependent. Muc2-/- microbiota was colitogenic to Muc2+/+ as it worsened DSS-induced colitis. Microbiota dependent inflammation was confirmed by bone-marrow chimera studies, as Muc2-/- receiving Muc2+/+ bone marrow showed no difference in their susceptibility toward DSS induced colitis. Muc2-/- microbiota exhibited presence of characteristic OTUs of specific bacterial populations that were transferrable to Muc2+/+ littermates. CONCLUSIONS: These results highlight a distinct role for Muc2 mucin in maintenance of healthy microbiota critical in shaping innate host defenses to promote intestinal homeostasis.


Subject(s)
Colitis/immunology , Disease Resistance/immunology , Gastrointestinal Microbiome/immunology , Immunity, Mucosal , Mucin-2/metabolism , Animals , Anti-Bacterial Agents/administration & dosage , Colitis/chemically induced , Colitis/pathology , Colon/drug effects , Colon/immunology , Colon/microbiology , Colon/pathology , Dextran Sulfate/administration & dosage , Dextran Sulfate/toxicity , Disease Models, Animal , Female , Gastrointestinal Microbiome/drug effects , Host Microbial Interactions/immunology , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Male , Mice , Mice, Knockout , Mucin-2/genetics
14.
J Leukoc Biol ; 108(3): 801-812, 2020 09.
Article in English | MEDLINE | ID: mdl-32498132

ABSTRACT

Intestinal amebiasis is the disease caused by the extracellular protozoan parasite Entamoeba histolytica (Eh) that induces a dynamic and heterogeneous interaction profile with the host immune system during disease pathogenesis. In 90% of asymptomatic infection, Eh resides with indigenous microbiota in the outer mucus layer of the colon without prompting an immune response. However, for reasons that remain unclear, in a minority of the Eh-infected individuals, this fine tolerated relationship is switched to a pathogenic phenotype and advanced to an increasingly complex host-parasite interaction. Eh disease susceptibility depends on parasite virulence factors and their interactions with indigenous bacteria, disruption of the mucus bilayers, and adherence to the epithelium provoking host immune cells to evoke a robust pro-inflammatory response mediated by inflammatory caspases and inflammasome activation. To understand Eh pathogenicity and innate host immune responses, this review highlights recent advances in our understanding of how Eh induces outside-in signaling via Mϕs to activate inflammatory caspases and inflammasome to regulate pro-inflammatory responses.


Subject(s)
Dysentery, Amebic/immunology , Entamoeba histolytica/immunology , Entamoebiasis/immunology , Host-Parasite Interactions/immunology , Immunity, Innate , Inflammasomes/immunology , Caspases/physiology , Cysteine Proteases/physiology , Entamoeba histolytica/pathogenicity , Gastrointestinal Microbiome , Humans , Lectins/physiology , Macrophages/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Protozoan Proteins/physiology , Virulence
15.
Nat Commun ; 11(1): 483, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31980623

ABSTRACT

Inflammatory bowel disease is associated with changes in the mucosal barrier, increased intestinal permeability, and increased risk of infections and sepsis, but the underlying mechanisms are incompletely understood. Here, we show how continuous translocation of gut microbial components affects iron homeostasis and facilitates susceptibility to inflammation-associated sepsis. A sub-lethal dose of lipopolysaccharide results in higher mortality in Mucin 2 deficient (Muc2-/-) mice, and is associated with elevated circulatory iron load and increased bacterial translocation. Translocation of gut microbial components attenuates hepatic stearoyl CoA desaturase-1 activity, a key enzyme in hepatic de novo lipogenesis. The resulting reduction of hepatic saturated and unsaturated fatty acid levels compromises plasma membrane fluidity of red blood cells, thereby significantly reducing their life span. Inflammation in Muc2-/- mice alters erythrophagocytosis efficiency of splenic macrophages, resulting in an iron-rich milieu that promotes bacterial growth. Our study thus shows that increased intestinal permeability triggers a cascade of events resulting in increased bacterial growth and risk of sepsis.


Subject(s)
Intestinal Mucosa/metabolism , Iron/metabolism , Liver/metabolism , Sepsis/metabolism , Stearoyl-CoA Desaturase/metabolism , Animals , Cell Membrane Permeability , Cytophagocytosis , Disease Models, Animal , Female , Gastrointestinal Microbiome , Inflammation/etiology , Inflammation/metabolism , Inflammation/microbiology , Intestinal Mucosa/microbiology , Iron/blood , Lipogenesis , Macrophages/metabolism , Male , Mice , Mice, Knockout , Mucin-2/deficiency , Mucin-2/genetics , Sepsis/etiology , Sepsis/microbiology
16.
Gut Microbes ; 11(1): 118-125, 2020.
Article in English | MEDLINE | ID: mdl-31091163

ABSTRACT

Entamoeba histolytica (Eh) is a protozoan parasite of humans that colonizes the outer colonic mucus layer. Under conditions not fully understood, Eh breaches innate host defenses and invades the intestinal mucosa-causing amebic colitis and liver abscess. In asymptomatic infection, Eh interacts with and feeds on resident microbiota that forms biofilms on the outer colonic mucus layer. Despite the close association between Eh and commensal microbiota, we still lack basic knowledge on whether microbiota and/or their metabolites influence Eh virulence traits critical in disease pathogenesis. In the pathogenesis of intestinal amebiasis, Eh overcomes the protective mucus layer using a combination of mucinase/glycosidase and potent mucus secretagogue activity. In this addendum, we discuss the interconnected role of a healthy mucus barrier and the role commensal microbiota play in shaping innate host defense against Eh-induced pro-inflammatory and secretory responses critical in disease pathogenesis.


Subject(s)
Dysentery, Amebic , Entamoeba histolytica , Gastrointestinal Microbiome/physiology , Intestinal Mucosa/metabolism , Mucins/metabolism , Cytokines/metabolism , Dysentery, Amebic/microbiology , Dysentery, Amebic/pathology , Entamoeba histolytica/pathogenicity , Entamoeba histolytica/physiology , Epithelial Cells/metabolism , Humans , Inflammation , Intestinal Mucosa/microbiology , Intestinal Mucosa/parasitology , Liver/parasitology , Liver/pathology , Virulence
17.
Mucosal Immunol ; 13(2): 344-356, 2020 03.
Article in English | MEDLINE | ID: mdl-31772322

ABSTRACT

Even though Entamoeba histolytica (Eh)-induced host pro-inflammatory responses play a critical role in disease, we know very little about the host factors that regulate this response. Direct contact between host cell and Eh signify the highest level of danger, and to eliminate this threat, the host immune system elicits an augmented immune response. To understand the mechanisms of this response, we investigated the induction and release of the endogenous alarmin molecule high-mobility group box 1 (HMGB1) that act as a pro-inflammatory cytokine and chemoattractant during Eh infection. Eh in contact with macrophage induced a dose- and time-dependent secretion of HMGB1 in the absence of cell death. Secretion of HMGB1 was facilitated by Eh surface Gal-lectin-activated phosphoinositide 3-kinase and nuclear factor-κB signaling and up-regulation of histone acetyltransferase activity to trigger acetylated HMGB1 translocation from the nucleus. Unlike lipopolysaccharide, Eh-induced HMGB1 release was independent of caspase-1-mediated inflammasome and gasdermin D pores. In vivo, Eh inoculation in specific pathogen-free but not germ-free mice was associated with high levels of pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1ß, and keratinocyte-derived chemokine, which was suppressed with HMGB1 neutralization. This study reveals that Eh-induced active secretion of the HMGB1 plays a key role in shaping the pro-inflammatory landscape critical in innate host defense against amebiasis.


Subject(s)
Alarmins/metabolism , CD4-Positive T-Lymphocytes/immunology , Entamoeba histolytica/physiology , Entamoebiasis/immunology , HMGB1 Protein/metabolism , Macrophages/immunology , Alarmins/genetics , Animals , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Caspase 1/metabolism , Cytokines/metabolism , HMGB1 Protein/genetics , Host-Pathogen Interactions , Humans , Immunity, Innate , Inflammation Mediators/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/immunology , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , THP-1 Cells
18.
Infect Immun ; 87(12)2019 12.
Article in English | MEDLINE | ID: mdl-31527129

ABSTRACT

Epidemiological studies suggest frequent association of enteropathogenic bacteria with Entamoeba histolytica during symptomatic infection. In this study, we sought to determine if the interaction with enteropathogenic (EPEC) or nonpathogenic Escherichia coli (strain DH5α) could modify the virulence of E. histolytica to cause disease in animal models of amebiasis. In vitro studies showed a 2-fold increase in CaCo2 monolayer destruction when E. histolytica interacted with EPEC but not with E. coli DH5α for 2.5 h. This was associated with increased E. histolytica proteolytic activity as revealed by zymogram analysis and degradation of the E. histolytica CP-A1/5 (EhCP-A1/5) peptide substrate Z-Arg-Arg-pNC and EhCP4 substrate Z-Val-Val-Arg-AMC. Additionally, E. histolytica-EPEC interaction increased EhCP-A1, -A2, -A4, and -A5, Hgl, Apa, and Cox-1 mRNA expression. Despite the marked upregulation of E. histolytica virulence factors, nonsignificant macroscopic differences in amebic liver abscess development were observed at early stages in hamsters inoculated with either E. histolytica-EPEC or E. histolytica-E. coli DH5α. Histopathology of livers of E. histolytica-EPEC-inoculated animals revealed foci of acute inflammation 3 h postinoculation that progressively increased, producing large inflammatory reactions, ischemia, and necrosis with high expression of il-1ß, ifn-γ, and tnf-α proinflammatory cytokine genes compared with that in livers of E. histolytica-E. coli DH5α-inoculated animals. In closed colonic loops from mice, intense inflammation was observed with E. histolytica-EPEC manifested by downregulation of Math1 mRNA with a corresponding increase in the expression of Muc2 mucin and proinflammatory cytokine genes il-6, il-12, and mcp-1 These results demonstrate that E. histolytica/EPEC interaction enhanced the expression and production of key molecules associated with E. histolytica virulence, critical in pathogenesis and progression of disease.


Subject(s)
Entamoeba histolytica/pathogenicity , Entamoebiasis/pathology , Enteropathogenic Escherichia coli/physiology , Host Microbial Interactions/physiology , Animals , Caco-2 Cells , Cell Line , Cricetinae , Cysteine Proteases/metabolism , Cytokines/metabolism , Entamoeba histolytica/microbiology , HT29 Cells , Humans , Inflammation , Mesocricetus , Mice , Mice, Inbred C57BL , Mucin-2/metabolism , Virulence Factors/biosynthesis
19.
Nat Commun ; 10(1): 4306, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31541089

ABSTRACT

The mucus layer is the first line of innate host defense in the gut that protects the epithelium by spatially separating commensal bacteria. MUC2 mucin is produced and stored by goblet cells that is constitutively exocytosed or hyper secreted upon sensing a threat. How coordinated mucus exocytosis maintains homeostasis in the intestinal epithelium and modulates the immunological landscape remains elusive. Here we describe how the vesicle SNARE protein VAMP8 coordinates mucin exocytosis from goblet cells. Vamp8-/- exhibit a mild pro-inflammatory state basally due to an altered mucus layer and increased encounters with microbial antigens. Microbial diversity shifts to a detrimental microbiota with an increase abundance of pathogenic and mucolytic bacteria. To alleviate the heavy microbial burden and inflammatory state basally, Vamp8-/- skews towards tolerance. Despite this, Vamp8-/- is highly susceptible to both chemical and infectious colitis demonstrating the fragility of the intestinal mucosa without proper mucus exocytosis mechanisms.


Subject(s)
Colon/metabolism , Exocytosis/physiology , Goblet Cells/metabolism , Intestinal Mucosa/metabolism , Mucin-2/metabolism , R-SNARE Proteins/metabolism , Animals , Biodiversity , Colon/pathology , Cytokines/metabolism , Goblet Cells/pathology , Homeostasis , Humans , Intestines/pathology , Mice, Knockout , Microbiota , Mucin-2/genetics , Mucus/metabolism , Phenotype , R-SNARE Proteins/genetics , SNARE Proteins/metabolism
20.
Infect Immun ; 87(11)2019 11.
Article in English | MEDLINE | ID: mdl-31427448

ABSTRACT

Entamoeba histolytica is an anaerobic parasitic protozoan and the causative agent of amoebiasis. E. histolytica expresses proteins that are structurally homologous to human proteins and uses them as virulence factors. We have previously shown that E. histolytica binds exogenous interferon gamma (IFN-γ) on its surface, and in this study, we explored whether exogenous IFN-γ could modulate parasite virulence. We identified an IFN-γ receptor-like protein on the surface of E. histolytica trophozoites by using anti-IFN-γ receptor 1 (IFN-γR1) antibody and performing immunofluorescence, Western blot, protein sequencing, and in silico analyses. Coupling of human IFN-γ to the IFN-γ receptor-like protein on live E. histolytica trophozoites significantly upregulated the expression of E. histolytica cysteine protease A1 (EhCP-A1), EhCP-A2, EhCP-A4, EhCP-A5, amebapore A (APA), cyclooxygenase 1 (Cox-1), Gal-lectin (Hgl), and peroxiredoxin (Prx) in a time-dependent fashion. IFN-γ signaling via the IFN-γ receptor-like protein enhanced E. histolytica's erythrophagocytosis of human red blood cells, which was abrogated by the STAT1 inhibitor fludarabine. Exogenous IFN-γ enhanced chemotaxis of E. histolytica, its killing of Caco-2 colonic and Hep G2 liver cells, and amebic liver abscess formation in hamsters. These results demonstrate that E. histolytica expresses a surface IFN-γ receptor-like protein that is functional and may play a role in disease pathogenesis and/or immune evasion.


Subject(s)
Entamoeba histolytica/metabolism , Protozoan Proteins/metabolism , Receptors, Interferon/chemistry , Amebiasis/immunology , Amebiasis/parasitology , Animals , Caco-2 Cells , Cell Survival , Cricetinae , Hep G2 Cells , Humans , Interferon-gamma/pharmacology , Male , Phagocytosis , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Interferon gamma Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...