Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dig Dis Sci ; 66(5): 1510-1523, 2021 05.
Article in English | MEDLINE | ID: mdl-32495257

ABSTRACT

BACKGROUND: Genomic instability is a hallmark of cancer cells contributing to tumor development and progression. Integrin-linked kinase (ILK) is a focal adhesion protein with well-established role in carcinogenesis. We have previously shown that ILK overexpression is critically implicated in human colorectal cancer (CRC) progression. In light of the recent findings that ILK regulates centrosomes and mitotic spindle formation, we aimed to determine its implication in mechanisms of genomic instability in human CRC. METHODS: Association of ILK expression with markers of genomic instability (micronuclei formation, nucleus size, and intensity) was investigated in diploid human colon cancer cells HCT116 upon ectopic ILK overexpression, by immunofluorescence and in human CRC samples by Feulgen staining. We also evaluated the role of ILK in mitotic spindle formation, by immunofluorescence, in HCT116 cells upon inhibition and overexpression of ILK. Finally, we evaluated association of ILK overexpression with markers of DNA damage (p-H2AX, p-ATM/ATR) in human CRC tissue samples by immunohistochemistry and in ILK-overexpressing cells by immunofluorescence. RESULTS: We showed that ILK overexpression is associated with genomic instability markers in human colon cancer cells and tissues samples. Aberrant mitotic spindles were observed in cells treated with specific ILK inhibitor (QLT0267), while ILK-overexpressing cells failed to undergo nocodazole-induced mitotic arrest. ILK overexpression was also associated with markers of DNA damage in HCT116 cells and human CRC tissue samples. CONCLUSIONS: The above findings indicate that overexpression of ILK is implicated in mechanisms of genomic instability in CRC suggesting a novel role of this protein in cancer.


Subject(s)
Colorectal Neoplasms/enzymology , DNA Damage , Genomic Instability , Micronuclei, Chromosome-Defective , Protein Serine-Threonine Kinases/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , HCT116 Cells , Histones/metabolism , Humans , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Spindle Apparatus/enzymology , Spindle Apparatus/genetics , Spindle Apparatus/pathology
2.
J Mol Histol ; 51(4): 385-400, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32592097

ABSTRACT

Integrin-linked kinase (ILK) forms a heterotrimeric protein complex with PINCH and PARVIN (IPP) in Focal Adhesions (FAs) that acts as a signaling platform between the cell and its microenvironment regulating important cancer-related functions. We aimed to elucidate the role of ILK in lung adenocarcinoma (LUADC) focusing on a possible link with KRAS oncogene. We used immunohistochemistry on human tissue samples and KRAS-driven LUADC in mice, analysis of large scale publicly available RNA sequencing data, ILK overexpression and pharmacological inhibition as well as knockdown of KRAS in lung cancer cells. ILK, PINCH1 and PARVB (IPP) proteins are overexpressed in human LUADC and KRAS-driven LUADC in mice representing poor prognostic indicators. Genes implicated in ILK signaling are significantly enriched in KRAS-driven LUADC. Silencing of KRAS, as well as, overexpression and pharmacological inhibition of ILK in lung cancer cells provide evidence of a two-way association between ILK and KRAS. Upregulation of PINCH, PARVB and Ras suppressor-1 (RSU1) expression was demonstrated in ILK overexpressing lung cancer cells in addition to a significant positive correlation between these factors in tissue samples, while KRAS silencing downregulates IPP and RSU1. Pharmacological inhibition of ILK in KRAS mutant lung cancer cells suppresses cell growth, migration, EMT and increases sensitivity to platinum-based chemotherapy. ILK promotes an aggressive lung cancer phenotype with prognostic and therapeutic value through functions that involve KRAS, IPP complex and RSU1, rendering ILK a promising biomarker and therapeutic target in lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung/metabolism , Cytoskeletal Proteins/metabolism , Lung Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Transcription Factors/metabolism , A549 Cells , Adenocarcinoma of Lung/pathology , Animals , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Humans , Lung Neoplasms/pathology , Mice , Signal Transduction/physiology , Tumor Microenvironment/physiology , Up-Regulation/physiology
3.
Virchows Arch ; 472(5): 727-737, 2018 May.
Article in English | MEDLINE | ID: mdl-29352327

ABSTRACT

Cofilin phospho-regulation is important for actin filament turnover and is implicated in cancer. Phosphorylation of cofilin is mediated by LIM kinases (LIMKs) and dephosphorylation by Slingshot phosphatases (SSH). LIMKs and SSH promote cancer cell invasion and metastasis and represent novel anti-cancer targets. However, little is known regarding LIMK/cofilin and SSH in human colorectal cancer (CRC). In this study, we aimed to address their expression and significance in human CRC. We evaluated expression of non-phosphorylated (active) and phosphorylated cofilin, LIMK1, LIMK2, and SSH1 by immunohistochemistry in 143 human CRC samples in relation to clinicopathologic parameters, response of metastatic disease to chemotherapy, and epithelial-mesenchymal transition (EMT) markers ß-catenin, E-cadherin, and ZEB. We show that active cofilin, LIMK1, LIMK2, and SSH1 are overexpressed in human CRC and are associated with tumor progression parameters. SSH1 is an independent predictor of lymph node metastasis by multivariate analysis. LIMK1 and SSH1 expression is also higher in non-responders to chemotherapy, and SSH1 is shown by multivariate analysis to independently predict response of metastatic disease to chemotherapy. Active cofilin, LIMK1, LIMK2, and SSH1 also correlated with the EMT markers examined. In addition, immunofluorescence analysis showed increased expression of active cofilin, LIMK1, LIMK2, and SSH1 in HT29 colon cancer cells resistant to 5-fluorouracil compared to parental HT29 cells. Our results suggest that F-actin regulators LIMK/cofilin pathway and SSH1 are associated with CRC progression and chemoresistance representing promising tumor biomarkers and therapeutic targets in CRC.


Subject(s)
Biomarkers, Tumor/analysis , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm/physiology , Actin Depolymerizing Factors/analysis , Actin Depolymerizing Factors/biosynthesis , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/drug therapy , Disease Progression , Female , Humans , Lim Kinases/analysis , Lim Kinases/biosynthesis , Male , Middle Aged , Phosphoprotein Phosphatases/analysis , Phosphoprotein Phosphatases/biosynthesis , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL