Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(4): 1513-1521, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36472217

ABSTRACT

This study demonstrates dynamically tunable multicolor emissions from a single component, zero-dimensional (0-D) cesium europium chloride (Cs3EuCl6) and cesium terbium chloride (Cs3TbCl6) nanocrystals (NCs). Highly uniform colloidal Cs3EuCl6 and Cs3TbCl6 NCs are synthesized via the heating-up method. Excitation-wavelength-dependent multicolor emissions from Cs3EuCl6 and Cs3TbCl6 NCs are observed. Under excitation of 330-400 nm, both NCs exhibit blue photoluminescence (PL). Under wavelengths shorter than 330 nm, characteristic red and green emissions are observed from Cs3EuCl6 and Cs3TbCl6, respectively, owing to the atomic emissions from the f-orbitals in trivalent europium (Eu3+) and terbium (Tb3+) ions. Cs3EuCl6 and Cs3TbCl6 NCs exhibit broadband excitation spectra and enhanced absorption properties. Particularly, Cs3EuCl6 NCs exhibit a very narrow full-width at half-maximum in both blue and red PL and no overlap between the two spectra. The photophysical properties of these NCs are further investigated to understand the multicolor PL origins by time-resolved and temperature-dependent PL measurements. Finally, the potential applications of Cs3EuCl6 and Cs3TbCl6 NCs as anti-counterfeiting inks for high-level security are demonstrated. Given their broadband excitation with enhanced absorption properties and dynamically tunable colors with a wide color gamut, Cs3EuCl6 and Cs3TbCl6 NCs have great potential as novel multicolor NC emitters for many emerging applications.

2.
ACS Appl Mater Interfaces ; 14(1): 1404-1412, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34978805

ABSTRACT

Reconfigurable light absorbers have attracted much attention by providing additional optical responses and expanding the number of degrees of freedom in security applications. Fabry-Pèrot absorbers based on phase change materials with tunable properties can be implemented over large scales without the need for additional steps such as lithography, while exhibiting reconfigurable optical responses. However, a fundamental limitation of widely used phase change materials such as vanadium dioxide and germanium-antimony-tellurium-based chalcogenide glasses is that they have only two distinct phases; therefore, only two different states of optical properties are available. Here, we experimentally demonstrate active multilevel absorbers that are tuned by controlling the external temperature. This is produced by creating large-scale lithography-free multilayer structures with both undoped and tungsten-doped solution-processed monoclinic-phase vanadium dioxide thin films. The doping of vanadium dioxide with tungsten allows for the modulation of the phase-transition temperature, which results in an extra degree of freedom and therefore an additional step for the tunable properties. The proposed multilevel absorber is designed and characterized both numerically and experimentally. Such large-scale multilevel tunable absorbers realized with nanoparticle-based solution fabrication techniques are expected to open the way for advanced thermo-optical cryptographic devices based on tunable reflective coloration and near-infrared absorption.

3.
Small ; 17(40): e2103302, 2021 10.
Article in English | MEDLINE | ID: mdl-34468086

ABSTRACT

In this paper, the N,N-dimethylformamide (DMF)-assisted shape evolution of highly uniform and shape-pure copper nanocrystals (Cu NCs) is presented for the first time. Colloidal Cu NCs are synthesized via the disproportionation reaction of copper (I) bromide in the presence of a non-polar solvent mixture. It is observed that the shape of Cu NCs is systematically controlled by the addition of different amounts of DMF to the reaction mixture in high-temperature reaction conditions while maintaining a high size uniformity and shape purity. With increasing amount of DMF in the reaction mixture, the morphology of the Cu NCs change from a cube enclosed by six {100} facets, to a sphere with mixed surface facets, and finally, to an octahedron enclosed by eight {111} facets. The origin of this shape evolution is understood via first-principles density functional theory calculations, which allows the study of the change in the relative surface stability according to surface-coordinating adsorbates. Further, the shape-dependent plasmonic properties are systematically investigated with highly uniform and ligand-exchanged colloidal Cu NCs dispersed in acetonitrile. Finally, the facet-dependent electrocatalytic activities of the shape-controlled Cu NCs are investigated to reveal the activities of the highly uniform and shape-pure Cu NCs in the methanol oxidation reaction.


Subject(s)
Copper , Nanoparticles , Dimethylformamide , Oxidation-Reduction
4.
Nanomaterials (Basel) ; 11(1)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33466841

ABSTRACT

In this study, we demonstrate the colloidal synthesis of nearly monodisperse, sub-100-nm phase change material (PCM) nanobeads with an organic n-paraffin core and poly(methylmethacrylate) (PMMA) shell. PCM nanobeads are synthesized via emulsion polymerization using ammonium persulfate as an initiator and sodium dodecylbenzenesulfonate as a surfactant. The highly uniform n-paraffin/PMMA PCM nanobeads are sub-100 nm in size and exhibit superior colloidal stability. Furthermore, the n-paraffin/PMMA PCM nanobeads exhibit reversible phase transition behaviors during the n-paraffin melting and solidification processes. During the solidification process, multiple peaks with relatively reduced phase change temperatures are observed, which are related to the phase transition of n-paraffin in the confined structure of the PMMA nanobeads. The phase change temperatures are further tailored by changing the carbon length of n-paraffin while maintaining the size uniformity of the PCM nanobeads. Sub-100-nm-sized and nearly monodisperse PCM nanobeads can be potentially utilized in thermal energy storage and drug delivery because of their high colloidal stability and solution processability.

SELECTION OF CITATIONS
SEARCH DETAIL