Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(24): e2312254, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521992

ABSTRACT

A new method is reported to make air-stable n-type organic mixed ionic-electronic conductor (OMIEC) films for organic electrochemical transistors (OECTs) using a solution-processable small molecule helical perylene diimide trimer, hPDI[3]-C11. Alkyl side chains are attached to the conjugated core for processability and film making, which are then cleaved via thermal annealing. After the sidechains are removed, the hPDI[3] film becomes less hydrophobic, more ordered, and has a deeper lowest unoccupied molecular orbital (LUMO). These features provide improved ionic transport, greater electronic mobility, and increased stability in air and in aqueous solution. Subsequently, hPDI[3]-H is used as the active material in OECTs and a device with a transconductance of 44 mS, volumetric capacitance of ≈250 F cm-3, µC* value of 1 F cm-1 V-1 s-1, and excellent stability (> 5 weeks) is demonstrated. As proof of their practical applications, a hPDI[3]-H-based OECTs as a glucose sensor and electrochemical inverter is utilized. The approach of side chain removal after film formation charts a path to a wide range of molecular semiconductors to be used as stable, mixed ionic-electronic conductors.

2.
Adv Mater ; 36(9): e2310478, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38054854

ABSTRACT

White-light detection from the visible to the near-infrared region is central to many applications such as high-speed cameras, autonomous vehicles, and wearable electronics. While organic photodetectors (OPDs) are being developed for such applications, several challenges must be overcome to produce scalable high-detectivity OPDs. This includes issues associated with low responsivity, narrow absorption range, and environmentally friendly device fabrication. Here, an OPD system processed from 2-methyltetrahydrofuran (2-MeTHF) sets a record in light detectivity, which is also comparable with commercially available silicon-based photodiodes is reported. The newly designed OPD is employed in wearable devices to monitor heart rate and blood oxygen saturation using a flexible OPD-based finger pulse oximeter. In achieving this, a framework for a detailed understanding of the structure-processing-property relationship in these OPDs is also developed. The bulk heterojunction (BHJ) thin films processed from 2-MeTHF are characterized at different length scales with advanced techniques. The BHJ morphology exhibits optimal intermixing and phase separation of donor and acceptor moieties, which facilitates the charge generation and collection process. Benefitting from high charge carrier mobilities and a low shunt leakage current, the newly developed OPD exhibits a specific detectivity of above 1012  Jones over 400-900 nm, which is higher than those of reference devices processed from chlorobenzene and ortho-xylene.

3.
Mater Horiz ; 10(12): 5564-5576, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37872787

ABSTRACT

We report on the use of molecular acceptors (MAs) and donor polymers processed with a biomass-derived solvent (2-methyltetrahydrofuran, 2-MeTHF) to facilitate bulk heterojunction (BHJ) organic photovoltaics (OPVs) with power conversion efficiency (PCE) approaching 15%. Our approach makes use of two newly designed donor polymers with an opened ring unit in their structures along with three molecular acceptors (MAs) where the backbone and sidechain were engineered to enhance the processability of BHJ OPVs using 2-MeTHF, as evaluated by an analysis of donor-acceptor (D-A) miscibility and interaction parameters. To understand the differences in the PCE values that ranged from 9-15% as a function of composition, the surface, bulk, and interfacial BHJ morphologies were characterized at different length scales using atomic force microscopy, grazing-incidence wide-angle X-ray scattering, resonant soft X-ray scattering, X-ray photoelectron spectroscopy, and 2D solid-state nuclear magnetic resonance spectroscopy. Our results indicate that the favorable D-A intermixing that occurs in the best performing BHJ film with an average domain size of ∼25 nm, high domain purity, uniform distribution and enhanced local packing interactions - facilitates charge generation and extraction while limiting the trap-assisted recombination process in the device, leading to high effective mobility and good performance.

4.
ACS Appl Mater Interfaces ; 15(31): 37748-37755, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37505202

ABSTRACT

Solution-processed organic photodetectors with broadband activity have been demonstrated with an environmentally benign solvent, ortho-xylene (o-xylene), as the processing solvent. The organic photodetectors employ a wide band gap polymer donor PBDB-T and a narrow band gap small-molecule non-fullerene acceptor CO1-4F, both dissolvable in o-xylene at a controlled temperature. The o-xylene-processed devices have shown external quantum efficiency of up to 70%, surpassing the counterpart processed with chlorobenzene. With a well-suppressed dark current, the device can also present a high specific detectivity of over 1012 Jones at -2 V within practical operation frequencies and is applicable for photoplethysmography with its fast response. These results further highlight the potential of green-solvent-processed organic photodetectors as a high-performing alternative to their counterparts processed in toxic chlorinated solvents without compromising the excellent photosensing performance.

5.
Adv Mater ; 34(31): e2203796, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35703912

ABSTRACT

The charge generation-recombination dynamics in three narrow-bandgap near-IR absorbing nonfullerene (NFA) based organic photovoltaic (OPV) systems with varied donor concentrations of 40%, 30%, and 20% are investigated. The dilution of the polymer donor with visible-range absorption leads to highly transparent active layers with blend average visible transmittance (AVT) values of 64%, 70%, and 77%, respectively. Opaque devices in the optimized highly reproducible device configuration comprising these transparent active layers lead to photoconversion efficiencies (PCEs) of 7.0%, 6.5%, and 4.1%. The investigation of these structures yields quantitative insights into changes in the charge generation, non-geminate charge recombination, and extraction dynamics upon dilution of the donor. Lastly, this study gives an outlook for employing the highly transparent active layers in semitransparent organic photovoltaics (ST-OPVs).

6.
Adv Mater ; 34(23): e2200274, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35362210

ABSTRACT

Reconfigurable organic logic devices are promising candidates for next generations of efficient computing systems and adaptive electronics. Ideally, such devices would be of simple structure and design, be power efficient, and compatible with high-throughput microfabrication techniques. This work reports an organic reconfigurable logic gate based on novel dual-mode organic electrochemical transistors (OECTs), which employ a self-doped conjugated polyelectrolyte as the active material, which then allows the transistors to operate in both depletion mode and enhancement mode. Furthermore, mode switching is accomplished by simply altering the polarity of the applied gate and drain voltages, which can be done on the fly. In contrast, achieving similar mode-switching functionality with other organic transistors typically requires complex molecular design or multi-device engineering. It in shown that dual-mode functionality is enabled by the concurrent existence of anion doping and cation dedoping of the films. A device physics model that accurately describes the behavior of these transistors is developed. Finally, the utility of these dual-mode transistors for implementing reconfigurable logic by fabricating a logic gate that may be switched between logic gates AND to NOR, and OR to NAND on the fly is demonstrated.

7.
ACS Appl Mater Interfaces ; 14(10): 12469-12478, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35230814

ABSTRACT

A wet processing method to fabricate high-performance organic electrochemical transistors (OECTs) is reported. Wet chemical processing enables a simple and reliable patterning step, substituting several complex and expensive cleanroom procedures in the fabrication of OECTs. We fabricate depletion-mode OECTs based on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and enhancement-mode OECTs based on a conjugated polyelectrolyte PCPDTBT-SO3K on rigid and flexible substrates using this wet processing method. We show that the wet chemical processing step can also serve as a chemical treatment to enhance the electrical properties of the active material in OECTs. To highlight the potential of the fabrication process in applications, a transistor-based chemical sensor is demonstrated, capable of detecting methylene blue, a popular redox reporter in biodetection and immunoassays, with good detectivity. Given the tremendous potential of OECTs in emerging technologies such as biosensing and neuromorphic computing, this simple fabrication process established herein will render the OECT platform more accessible for research and applications.

8.
Adv Mater ; 34(6): e2105943, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34818688

ABSTRACT

Fused-ring core nonfullerene acceptors (NFAs), designated "Y-series," have enabled high-performance organic solar cells (OSCs) achieving over 18% power conversion efficiency (PCE). Since the introduction of these NFAs, much effort has been expended to understand the reasons for their exceptional performance. While several studies have identified key optoelectronic properties that govern high PCEs, little is known about the molecular level origins of large variations in performance, spanning from 5% to 18% PCE, for example, in the case of PM6:Y6 OSCs. Here, a combined solid-state NMR, crystallography, and molecular modeling approach to elucidate the atomic-scale interactions in Y6 crystals, thin films, and PM6:Y6 bulk heterojunction (BHJ) blends is introduced. It is shown that the Y6 morphologies in BHJ blends are not governed by the morphology in neat films or single crystals. Notably, PM6:Y6 blends processed from different solvents self-assemble into different structures and morphologies, whereby the relative orientations of the sidechains and end groups of the Y6 molecules to their fused-ring cores play a crucial role in determining the resulting morphology and overall performance of the solar cells. The molecular-level understanding of BHJs enabled by this approach will guide the engineering of next-generation NFAs for stable and efficient OSCs.

9.
Adv Mater ; 34(5): e2103976, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34793602

ABSTRACT

As in many fields, the most exciting endeavors in photon upconversion research focus on increasing the efficiency (upconversion quantum yield) and performance (anti-Stokes shift) while diminishing the cost of production. In this vein, studies employing metal-free thermally activated delayed fluorescence (TADF) sensitizers have garnered increased interest. Here, for the first time, the strategy of ternary photon upconversion is utilized with the TADF sensitizer 2,4,5,6-tetrakis(carbazol-9-yl)isophthalonitrile (4CzIPN), resulting in a doubling of the upconversion quantum yield in comparison to the binary system employing p-terphenyl as the emitter. In this ternary blend, the sensitizer 4CzIPN is paired with an intermediate acceptor, 1-methylnaphthalene, in addition to the emitter molecule, p-terphenyl, yielding a normalized upconversion quantum yield of 7.6% while maintaining the 0.83 eV anti-Stokes shift. These results illustrate the potential benefits of utilizing this strategy of energy-funneling, previously used only with heavy-metal based sensitizers, to increase the performance of these photon upconversion systems.

10.
ACS Appl Mater Interfaces ; 13(50): 60288-60298, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34889097

ABSTRACT

Recently, with the development of figure-of-merit non-fullerene acceptor materials combined with a ternary strategy and layer-by-layer (LbL) processing, the efficiency of single-junction organic solar cells has exceeded 18%. However, the structural properties of LbL-processed films have not been sufficiently elucidated. Herein, we systematically investigate films fabricated via LbL processing of three different systems, including a ternary system. In particular, we focus on the structural and morphological transitions associated with the diffusion process controlled by thermal annealing and an additive solvent. Different diffusion and crystal formation mechanisms were clearly identified, which were observed to be dependent on the characteristics of the upper layer formed during the LbL process. Based on this insight, the photovoltaic properties associated with various LbL conditions are elucidated, and an ideal path toward a better device is suggested.

11.
Opt Express ; 27(13): 18044-18054, 2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31252753

ABSTRACT

Molecular excitonic films such as J-aggregate thin films can show an optically metallic response in the visible region and can be considered as alternative materials for plasmonics. However, there was no direct, top-down method to modify the optical response over a large area. Here, we demonstrate the femtosecond (fs) laser processing of J-aggregate films on the centimeter scale. With proper laser conditions, optically metallic films (Re[ε] < 0) were modified to dielectric ones (Re[ε] > 0) with large changes in optical responses. We performed various optical spectrum measurements to investigate the effect of fs-laser irradiation. Our results demonstrate that the strong modification of the optical response can be induced over a large area by fs-laser processing and this can be useful for novel nanophotonic studies.

12.
Nanoscale ; 10(45): 21052-21061, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30215661

ABSTRACT

Recently, the sequential (Sq) process, which forms nanoscale network structures from quasi-solid-state inter-diffusion through swelling and annealing, is considered to be one of the most efficient methods for fabricating organic solar cells and blend films. Here, we examined the effect of the crystallinity and orientation of poly(3-hexylthiophene) (P3HT) molecules on the formation of the nanostructure by carrying out a Sq process using various solvents with different boiling points. We showed that the moderate crystallinity promoted suitable inter-diffusion between the donor (P3HT) and acceptor ([6,6]-pentadeuterophenyl C61 butyric acid methyl ester, PC60BM), and hence was important for achieving high-performance solar cells using Sq processing. Nanostructure formation by inter-diffusion was investigated and visualized by taking a combination of grazing-incidence wide-angle X-ray scattering (GIWAXS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements. In addition, our Sq-processed solar cell yielded a device efficiency as high as 3.25%, and was also impressive because it was made with an eco-friendly solvent and using a short-duration annealing process, in contrast to the conventional BHJ process. The present findings provided advanced insight into the Sq process, and we anticipate this efficacious sequential process to contribute not only to the development of higher-efficiency organic solar cells but also to the fabrication of functional blend films.

13.
Nanoscale ; 10(27): 13261-13269, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-29971282

ABSTRACT

Ferroelectric photovoltaics (FPVs) have drawn much attention owing to their high stability, environmental safety, and anomalously high photovoltages, coupled with reversibly switchable photovoltaic responses. However, FPVs suffer from extremely low photocurrents, which is primarily due to their wide band gaps. Here, we present a new class of FPVs by demonstrating switchable ferroelectric photovoltaic effects and narrow band-gap properties using hexagonal ferrite (h-RFeO3) thin films, where R denotes rare-earth ions. FPVs with narrow band gaps suggest their potential applicability as photovoltaic and optoelectronic devices. The h-RFeO3 films further exhibit reasonably large ferroelectric polarizations (4.7-8.5 µC cm-2), which possibly reduces a rapid recombination rate of the photo-generated electron-hole pairs. The power conversion efficiency (PCE) of h-RFeO3 thin-film devices is sensitive to the magnitude of polarization. In the case of the h-TmFeO3 (h-TFO) thin film, the measured PCE is twice as large as that of the BiFeO3 thin film, a prototypic FPV. The effect of electrical fatigue on FPV responses has been further investigated. This work thus demonstrates a new class of FPVs towards high-efficiency solar cell and optoelectronic applications.

14.
ACS Appl Mater Interfaces ; 10(30): 25614-25620, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29992818

ABSTRACT

Inverted near-infrared (NIR) organic photodetectors (OPDs) are required to combine the OPDs with an n-channel silicon-based integrated circuit. NIR absorption in the 930-960 nm range is important because the intensity of solar irradiation is low in this wavelength regime. Here, we controlled the crystallinity of lead(II) phthalocyanine (PbPc) in a PbPc:C60 blend film to obtain NIR absorption. To form a triclinic phase responsible for NIR light absorption, a substrate was heated during fabrication and C60 was used as a templating layer, as well as an electron extraction layer, for an inverted structure. NIR absorption near 950 nm was enhanced, and the structural properties of the film changed dramatically. The OPD with enhanced NIR absorption exhibited a responsivity of 244 mA/W and an external quantum efficiency of 31.1% at a reverse bias of -3 V and 970 nm. The OPD detectivity also increased to 9.01 × 1012 and 1.36 × 1011 cm Hz1/2/W under a zero bias and a reverse bias of -3 V, respectively.

15.
ACS Appl Mater Interfaces ; 9(29): 24422-24427, 2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28691483

ABSTRACT

We report femtosecond infrared laser-induced selective tailoring of carrier transport as well as surface morphology on a conducting polymer blend thin film. Maximal 2.4 times enhancement on vertical current transport in poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester, was achieved by this irradiation. The laser irradiation induced a photo expansion without deteriorating its molecular structure and the film morphology could be customized in the micron scale by adjusting the laser writing parameters. In the photoexpanded region, the face-on populations were about 2.2 times larger in comparison with the pristine region, which was a major contributor to the enhanced carrier transport.

SELECTION OF CITATIONS
SEARCH DETAIL