Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
JACS Au ; 2(9): 1964-1977, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36186569

ABSTRACT

The application of machine learning to predict materials properties measured by experiments are valuable yet difficult due to the limited amount of experimental data. In this work, we use a multifidelity random forest model to learn the experimental formation enthalpy of materials with prediction accuracy higher than the Perdew-Burke-Ernzerhof (PBE) functional with linear correction, PBEsol, and meta-generalized gradient approximation (meta-GGA) functionals (SCAN and r2SCAN), and it outperforms the hotly studied deep neural network-based representation learning and transfer learning. We then use the model to calibrate the DFT formation enthalpy in the Materials Project database and discover materials with underestimated stability. The multifidelity model is also used as a data-mining approach to find how DFT deviates from experiments by explaining the model output.

2.
ACS Appl Mater Interfaces ; 14(30): 34997-35009, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35861058

ABSTRACT

Solution-processed silver nanowire (AgNW) networks are promising as next-generation transparent conductive electrodes due to their excellent optoelectronic properties, mechanical flexibility, as well as low material and processing costs. However, AgNWs are prone to thermally induced fragmentation and chemical degradation, necessitating a conformal protective coating typically achieved by low-throughput methods such as sputtering or atomic layer deposition. Herein, we report a facile all-solution-based approach to synthesize a conformally coated AgNW network by nanosized reduced graphene oxide R(nGO). In this method, probe ultrasonication is used to obtain nanosized GO, which is coated on AgNWs by a layer-by-layer approach and then chemically treated to form R(nGO)/AgNW. We show that our transparent electrode has excellent transmittance (85-92%) and sheet resistance (17.5 Ω/sq), combined with outstanding thermal and electrothermal stability, thanks to the conformal nature of the R(nGO) film, and demonstrate its use as a transparent heater with a high maximum temperature. This, in conjunction with improved long-term chemical and mechanical bending stability of R(nGO)/AgNW, indicates that our newly developed process represents an effective and low-cost strategy to improve the overall operational resilience of metal nanowire-based transparent conductive electrodes.

3.
Adv Mater ; 33(5): e2004356, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33346400

ABSTRACT

Metal nanowire (MNW)-based transparent electrode technologies have significantly matured over the last decade to become a prominent low-cost alternative to indium tin oxide (ITO). Beyond reaching the same level of performance as ITO, MNW networks offer additional advantages including flexibility and low materials cost. To facilitate adoption of MNW networks as a replacement to ITO, they must overcome their inherent stability issues while maintaining their properties and cost-effectiveness. Herein, the fundamental failure mechanisms of MNW networks are discussed in detail. Recent strategies to computationally model MNWs from the nano- to macroscale and suggest future work to capture dynamic failure to unravel mechanisms that account for convolution of the failure modes are highlighted. Strategies to characterize MNW network failure in situ and postmortem are also discussed. In addition, recent work about improving the stability of MNW networks via encapsulation is discussed. Lastly, a perspective is given on how to frame the requirements of MNW-encapsulant hybrids with reference to their target applications, namely: solar cells, transparent film heaters, sensors, and displays. A cost analysis to comment on the feasibility of implementing MNW hybrids is provided, and critical areas to focus on for future work on MNW networks are suggested.

4.
ACS Appl Mater Interfaces ; 12(15): 17909-17920, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32233415

ABSTRACT

Owing to their high conductivity, transparency, flexibility, and compatibility with solution processes, silver nanowire (AgNW) networks have been widely explored as a promising alternative to indium tin oxide (ITO). However, their susceptibility to corrosion and thermal instability still remain limiting factors for widespread adoption in a range of devices including solar cells, transparent heaters, and light-emitting diodes. In this study, we report a scalable and economically viable process involving electrophoretic deposition (EPD) to fabricate a highly stable hybrid transparent electrode with a sandwich-like structure, where a AgNW network is covered by graphene oxide (GO) films on both sides. The newly developed all solution process allows the conductive transparent film to be transferred to an arbitrary surface after deposition and demonstrates excellent sheet resistance (15 Ω/sq) and tunable transmittance (70-87% at 550 nm). Unlike bare AgNW networks, the hybrid electrode retains its original conductivity under long-term storage at up to 80% relative humidity. This chemical resilience is explained by the absence of silver corrosion products for the AgNW encapsulated by GO as indicated by X-ray photoelectron spectroscopy. In situ voltage ramping and resistance measurements up to 20 V indicate a novel stabilization mechanism enabled by the presence of GO which delays the failure onset and prevents abrupt divergence of the resistance to the megaohm range experienced by bare AgNW networks. The double-sided nature of the GO coating offers combined stability and performance to the AgNW network, which adds unique versatility of our electrodes to be used toward applications that require a wide range of thermal and chemical stabilities.

SELECTION OF CITATIONS
SEARCH DETAIL
...