Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Neonatology ; 116(1): 76-84, 2019.
Article in English | MEDLINE | ID: mdl-31091527

ABSTRACT

BACKGROUND AND OBJECTIVES: Therapeutic interventions to improve the efficacy of whole-body cooling for hypoxic-ischemic encephalopathy (HIE) are desirable. Topiramate has been effective in reducing brain damage in experimental studies. However, in the clinical setting information is limited to a small number of feasibility trials. We launched a randomized controlled double-blinded topiramate/placebo multicenter trial with the primary objective being to reduce the antiepileptic activity in cooled neonates with HIE and assess if brain damage would be reduced as a consequence. STUDY DESIGN: Neonates were randomly assigned to topiramate or placebo at the initiation of hypothermia. Topiramate was administered via a nasogastric tube. Brain electric activity was continuously monitored. Topiramate pharmacokinetics, energy-related and Krebs' cycle intermediates, and lipid peroxidation biomarkers were determined using liquid chromatography-mass spectrometry and MRI for assessing brain damage. RESULTS: Out of 180 eligible patients 110 were randomized, 57 (51.8%) to topiramate and 53 (48.2%) to placebo. No differences in the perinatal or postnatal variables were found. The topiramate group exhibited less seizure burden in the first 24 h of hypothermia (topiramate, n = 14 [25.9%] vs. placebo, n = 22 [42%]); needed less additional medication, and had lower mortality (topiramate, n = 5 [9.2%] vs. placebo, n = 10 [19.2%]); however, these results did not achieve statistical significance. Topiramate achieved a therapeutic range in 37.5 and 75.5% of the patients at 24 and 48 h, respectively. A significant association between serum topiramate levels and seizure activity (p < 0.016) was established. No differences for oxidative stress, energy-related metabolites, or MRI were found. CONCLUSIONS: Topiramate reduced seizures in patients achieving therapeutic levels in the first hours after treatment initiation; however, they represented only a part of the study population. Our results warrant further studies with higher loading and maintenance dosing of topiramate.


Subject(s)
Hypothermia, Induced , Hypoxia-Ischemia, Brain/therapy , Neuroprotective Agents/therapeutic use , Topiramate/therapeutic use , Combined Modality Therapy , Double-Blind Method , Female , Humans , Hypoxia-Ischemia, Brain/diagnostic imaging , Infant, Newborn , Logistic Models , Magnetic Resonance Imaging , Male , Neuroprotective Agents/adverse effects , Topiramate/adverse effects
2.
An. pediatr. (2003. Ed. impr.) ; 88(4): 228.e1-228.e9, abr. 2018. graf, ilus
Article in Spanish | IBECS | ID: ibc-172996

ABSTRACT

La asfixia intraparto es una de las causas más frecuentes de muerte neonatal precoz pero también puede, en los supervivientes, evolucionar a una encefalopatía hipóxico-isquémica responsable de una elevada morbilidad neurológica. La presencia de episodios de hipoxia-isquemia prolongados conduce a un rápido agotamiento energético en los tejidos exclusivamente dependientes del metabolismo aeróbico, como el sistema nervioso central. El déficit energético conlleva una paralización de las bombas ATP-dependientes y subsiguiente pérdida del potencial neuronal transmembrana. La población neuronal de las regiones más sensibles del SNC mueren por necrosis, mientras que en otras áreas se produce una hiperexcitabilidad neuronal con entrada masiva de calcio iónico, activación de NO-sintasa, generación de radicales libres que alteran el funcionamiento mitocondrial, provocando un fallo energético secundario y muerte neuronal por apoptosis. Recientemente se ha propuesto una tercera fase en la que factores como la inflamación persistente y los cambios epigenéticos causarían un bloqueo de la maduración de los oligodendrocitos, alteración de la neurogénesis, del crecimiento axonal y de la sinaptogénesis. En este contexto, el estrés oxidativo va a tener un papel protagonista como responsable tanto en causar daño directo al SNC como en activar cascadas metabólicas conducentes a la apoptosis e inflamación. La hipotermia moderada precoz, al preservar las reservas energéticas y disminuir la formación de especies reactivas de oxígeno, atenuará el daño cerebral posreanimación. La combinación de la hipotermia con terapias coadyuvantes para modular el estrés oxidativo podría contribuir a mejorar el pronóstico


Birth asphyxia is one of the principal causes of early neonatal death. In survivors it may evolve to hypoxic-ischaemic encephalopathy and major long-term neurological morbidity. Prolonged and intense asphyxia will lead to energy exhaustion in tissues exclusively dependent on aerobic metabolism, such as the central nervous system. Energy deficit leads to ATP-dependent pumps blockage, with the subsequent loss of neuronal transmembrane potential. The most sensitive areas of the brain will die due to necrosis. In more resistant areas, neuronal hyper-excitability, massive entrance of ionic calcium, activation of NO-synthase, free radical generation, and alteration in mitochondrial metabolism will lead to a secondary energy failure and programmed neuronal death by means of the activation of the caspase pathways. A third phase has recently been described that includes persistent inflammation and epigenetic changes that would lead to a blockage of oligodendrocyte maturation, alteration of neurogenesis, axonal maturation, and synaptogenesis. In this scenario, oxidative stress plays a critical role causing direct damage to the central nervous system and activating metabolic cascades leading to apoptosis and inflammation. Moderate whole body hypothermia to preserve energy stores and to reduce the formation of oxygen reactive species attenuates the mechanisms that lead to the amplification of cerebral damage upon resuscitation. The combination of hypothermia with coadjuvant therapies may contribute to improve the prognosis


Subject(s)
Humans , Infant, Newborn , Oxidative Stress , Hypoxia-Ischemia, Brain/diagnosis , Hypothermia/therapy , Oxidative Phosphorylation , Hypoxia-Ischemia, Brain/complications , Indicators of Morbidity and Mortality
3.
An Pediatr (Engl Ed) ; 88(4): 228.e1-228.e9, 2018 Apr.
Article in Spanish | MEDLINE | ID: mdl-28648366

ABSTRACT

Birth asphyxia is one of the principal causes of early neonatal death. In survivors it may evolve to hypoxic-ischaemic encephalopathy and major long-term neurological morbidity. Prolonged and intense asphyxia will lead to energy exhaustion in tissues exclusively dependent on aerobic metabolism, such as the central nervous system. Energy deficit leads to ATP-dependent pumps blockage, with the subsequent loss of neuronal transmembrane potential. The most sensitive areas of the brain will die due to necrosis. In more resistant areas, neuronal hyper-excitability, massive entrance of ionic calcium, activation of NO-synthase, free radical generation, and alteration in mitochondrial metabolism will lead to a secondary energy failure and programmed neuronal death by means of the activation of the caspase pathways. A third phase has recently been described that includes persistent inflammation and epigenetic changes that would lead to a blockage of oligodendrocyte maturation, alteration of neurogenesis, axonal maturation, and synaptogenesis. In this scenario, oxidative stress plays a critical role causing direct damage to the central nervous system and activating metabolic cascades leading to apoptosis and inflammation. Moderate whole body hypothermia to preserve energy stores and to reduce the formation of oxygen reactive species attenuates the mechanisms that lead to the amplification of cerebral damage upon resuscitation. The combination of hypothermia with coadjuvant therapies may contribute to improve the prognosis.


Subject(s)
Asphyxia Neonatorum/metabolism , Hypoxia-Ischemia, Brain/metabolism , Oxidative Stress , Asphyxia Neonatorum/diagnosis , Asphyxia Neonatorum/therapy , Humans , Hypoxia-Ischemia, Brain/diagnosis , Hypoxia-Ischemia, Brain/therapy , Infant, Newborn
4.
Sci Rep ; 7(1): 17039, 2017 12 06.
Article in English | MEDLINE | ID: mdl-29213095

ABSTRACT

Therapeutic hypothermia (TH) initiated within 6 h from birth is the most effective therapeutic approach for moderate to severe hypoxic-ischemic encephalopathy (HIE). However, underlying mechanisms and effects on the human metabolism are not yet fully understood. This work aims at studying the evolution of several energy related key metabolites in newborns with HIE undergoing TH employing gas chromatography - mass spectrometry. The method was validated following stringent FDA requirements and applied to 194 samples from a subgroup of newborns with HIE (N = 61) enrolled in a multicenter clinical trial (HYPOTOP) for the determination of lactate, pyruvate, ketone bodies and several Krebs cycle metabolites at different sampling time points. The analysis of plasma samples from newborns with HIE revealed a decrease of lactate, pyruvate and ß-hydroxybutyrate concentrations, whereas rising malate concentrations were observed. In healthy control newborns (N = 19) significantly lower levels of pyruvate and lactate were found in comparison to age-matched newborns with HIE undergoing TH, whereas acetoacetate and ß-hydroxybutyrate levels were clearly increased. Access to a validated analytical method and a controlled cohort of newborns with HIE undergoing hypothermia treatment for the first time allowed the in-depth study of the evolution of key metabolites of metabolic junctions in this special population.


Subject(s)
Hypothermia, Induced/methods , Hypoxia-Ischemia, Brain/therapy , 3-Hydroxybutyric Acid/blood , Acetoacetates/blood , Biomarkers/blood , Case-Control Studies , Female , Gas Chromatography-Mass Spectrometry , Humans , Infant, Newborn , Ketone Bodies/blood , Lactic Acid/blood , Limit of Detection , Male , Pyruvic Acid/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...