Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Cell Rep ; 43(6): 114260, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38838225

ABSTRACT

Immunotherapy remains underexploited in acute myeloid leukemia (AML) compared to other hematological malignancies. Currently, gemtuzumab ozogamicin is the only therapeutic antibody approved for this disease. Here, to identify potential targets for immunotherapeutic intervention, we analyze the surface proteome of 100 genetically diverse primary human AML specimens for the identification of cell surface proteins and conduct single-cell transcriptome analyses on a subset of these specimens to assess antigen expression at the sub-population level. Through this comprehensive effort, we successfully identify numerous antigens and markers preferentially expressed by primitive AML cells. Many identified antigens are targeted by therapeutic antibodies currently under clinical evaluation for various cancer types, highlighting the potential therapeutic value of the approach. Importantly, this initiative uncovers AML heterogeneity at the surfaceome level, identifies several antigens and potential primitive cell markers characterizing AML subgroups, and positions immunotherapy as a promising approach to target AML subgroup specificities.


Subject(s)
Immunotherapy , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/pathology , Immunotherapy/methods , Membrane Proteins/metabolism
2.
Blood ; 143(10): 882-894, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38207291

ABSTRACT

ABSTRACT: Ex vivo expansion of hematopoietic stem cells (HSCs) is gaining importance for cell and gene therapy, and requires a shift from dormancy state to activation and cycling. However, abnormal or excessive HSC activation results in reduced self-renewal ability and increased propensity for myeloid-biased differentiation. We now report that activation of the E3 ligase complex CRL3KBTBD4 by UM171 not only induces epigenetic changes through CoREST1 degradation but also controls chromatin-bound master regulator of cell cycle entry and proliferative metabolism (MYC) levels to prevent excessive activation and maintain lympho-myeloid potential of expanded populations. Furthermore, reconstitution activity and multipotency of UM171-treated HSCs are specifically compromised when MYC levels are experimentally increased despite degradation of CoREST1.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Hematopoietic Stem Cells/metabolism , Hematopoiesis , Hematopoietic Stem Cell Transplantation/methods , Cell Cycle , Cell Differentiation
3.
Blood Adv ; 8(1): 112-129, 2024 01 09.
Article in English | MEDLINE | ID: mdl-37729615

ABSTRACT

ABSTRACT: Acute megakaryoblastic leukemia (AMKL) is a rare, developmentally restricted, and highly lethal cancer of early childhood. The paucity and hypocellularity (due to myelofibrosis) of primary patient samples hamper the discovery of cell- and genotype-specific treatments. AMKL is driven by mutually exclusive chimeric fusion oncogenes in two-thirds of the cases, with CBFA2T3::GLIS2 (CG2) and NUP98 fusions (NUP98r) representing the highest-fatality subgroups. We established CD34+ cord blood-derived CG2 models (n = 6) that sustain serial transplantation and recapitulate human leukemia regarding immunophenotype, leukemia-initiating cell frequencies, comutational landscape, and gene expression signature, with distinct upregulation of the prosurvival factor B-cell lymphoma 2 (BCL2). Cell membrane proteomic analyses highlighted CG2 surface markers preferentially expressed on leukemic cells compared with CD34+ cells (eg, NCAM1 and CD151). AMKL differentiation block in the mega-erythroid progenitor space was confirmed by single-cell profiling. Although CG2 cells were rather resistant to BCL2 genetic knockdown or selective pharmacological inhibition with venetoclax, they were vulnerable to strategies that target the megakaryocytic prosurvival factor BCL-XL (BCL2L1), including in vitro and in vivo treatment with BCL2/BCL-XL/BCL-W inhibitor navitoclax and DT2216, a selective BCL-XL proteolysis-targeting chimera degrader developed to limit thrombocytopenia in patients. NUP98r AMKL were also sensitive to BCL-XL inhibition but not the NUP98r monocytic leukemia, pointing to a lineage-specific dependency. Navitoclax or DT2216 treatment in combination with low-dose cytarabine further reduced leukemic burden in mice. This work extends the cellular and molecular diversity set of human AMKL models and uncovers BCL-XL as a therapeutic vulnerability in CG2 and NUP98r AMKL.


Subject(s)
Antineoplastic Agents , Leukemia, Megakaryoblastic, Acute , Humans , Child , Child, Preschool , Animals , Mice , Leukemia, Megakaryoblastic, Acute/drug therapy , Leukemia, Megakaryoblastic, Acute/genetics , Leukemia, Megakaryoblastic, Acute/pathology , Proteomics , Transcription Factors , Proto-Oncogene Proteins c-bcl-2 , Repressor Proteins
4.
Leukemia ; 38(3): 530-537, 2024 03.
Article in English | MEDLINE | ID: mdl-38102204

ABSTRACT

Monosomy 5 and deletions of the chromosome 5q (-5/del(5q)) are recurrent events in de novo adult acute myeloid leukemia (AML), reaching up to 40% of cases in secondary AML. These chromosome anomalies are associated with TP53 mutations and with very poor prognosis. Using the large Leucegene genomic and transcriptomic dataset composed of 48 -5/del(5q) patient specimens and 367 control AML, we identified DELE1 - located in the common deleted region - as the most consistently downregulated gene in these leukemias. DELE1 encodes a mitochondrial protein recently characterized as the relay of mitochondrial stress to the cytosol through a newly defined OMA1-DELE1-HRI pathway which ultimately leads to the activation of ATF4, the master transcription factor of the integrated stress response. Here, we showed that the partial loss of DELE1 expression observed in -5/del(5q) patients was sufficient to significantly reduce the sensitivity to mitochondrial stress in AML cells. Overall, our results suggest that DELE1 haploinsufficiency could represent a new driver mechanism in -5/del(5q) AML.


Subject(s)
Haploinsufficiency , Leukemia, Myeloid, Acute , Mitochondrial Proteins , Monosomy , Adult , Humans , Apoptosis/genetics , Chromosome Deletion , Chromosomes, Human, Pair 5/genetics , Leukemia, Myeloid, Acute/genetics , Mitochondrial Proteins/genetics
6.
Blood Adv ; 6(16): 4793-4806, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35797243

ABSTRACT

High-mobility group AT-hook 2 (HMGA2) is a nonhistone chromatin-binding protein that is normally expressed in stem cells of various tissues and aberrantly detected in several tumor types. We recently observed that one-fourth of human acute myeloid leukemia (AML) specimens express HMGA2, which associates with a very poor prognosis. We present results indicating that HMGA2+ AMLs share a distinct transcriptional signature representing an immature phenotype. Using single-cell analyses, we showed that HMGA2 is expressed in CD34+ subsets of stem cells and early progenitors, whether normal or derived from AML specimens. Of interest, we found that one of the strongest gene expression signatures associated with HMGA2 in AML is the upregulation of G2/M checkpoint genes. Whole-genome CRISPR/Cas9 screening in HMGA2 overexpressing cells further revealed a synthetic lethal interaction with several G2/M checkpoint genes. Accordingly, small molecules that target G2/M proteins were preferentially active in vitro and in vivo on HMGA2+ AML specimens. Together, our findings suggest that HMGA2 is a key functional determinant in AML and is associated with stem cell features, G2/M status, and related drug sensitivity.


Subject(s)
Leukemia, Myeloid, Acute , Antigens, CD34 , Cell Cycle Checkpoints , Humans , Leukemia, Myeloid, Acute/pathology , Up-Regulation
8.
Blood ; 138(25): 2642-2654, 2021 12 23.
Article in English | MEDLINE | ID: mdl-34499717

ABSTRACT

Hematopoietic stem cells (HSCs) sustain blood cell homeostasis throughout life and can regenerate all blood lineages after transplantation. Despite this clear functional definition, highly enriched isolation of human HSCs can currently only be achieved through combinatorial assessment of multiple surface antigens. Although several transgenic HSC reporter mouse strains have been described, no analogous approach to prospectively isolate human HSCs has been reported. To identify genes with the most selective expression in human HSCs, we profiled population and single-cell transcriptomes of unexpanded and ex vivo cultured cord blood-derived hematopoietic stem and progenitor cells as well as peripheral blood, adult bone marrow, and fetal liver. On the basis of these analyses, we propose the master transcription factor HLF (hepatic leukemia factor) as one of the most specific HSC marker genes. To directly track its expression in human hematopoietic cells, we developed a genomic HLF reporter strategy, capable of selectively labeling the most immature blood cells on the basis of a single engineered parameter. Most importantly, HLF-expressing cells comprise all stem cell activity in culture and in vivo during serial transplantation. Taken together, these results experimentally establish HLF as a defining gene of the human HSC state and outline a new approach to continuously mark these cells with high fidelity.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Gene Expression , Hematopoietic Stem Cells/metabolism , Transcriptome , Hematopoiesis , Hematopoietic Stem Cells/cytology , Humans , Single-Cell Analysis
9.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: mdl-33692124

ABSTRACT

Zinc finger (ZnF) proteins represent one of the largest families of human proteins, although most remain uncharacterized. Given that numerous ZnF proteins are able to interact with DNA and poly(ADP ribose), there is growing interest in understanding their mechanism of action in the maintenance of genome integrity. We now report that the ZnF protein E4F transcription factor 1 (E4F1) is an actor in DNA repair. Indeed, E4F1 is rapidly recruited, in a poly(ADP ribose) polymerase (PARP)-dependent manner, to DNA breaks and promotes ATR/CHK1 signaling, DNA-end resection, and subsequent homologous recombination. Moreover, we identify E4F1 as a regulator of the ATP-dependent chromatin remodeling SWI/SNF complex in DNA repair. E4F1 binds to the catalytic subunit BRG1/SMARCA4 and together with PARP-1 mediates its recruitment to DNA lesions. We also report that a proportion of human breast cancers show amplification and overexpression of E4F1 or BRG1 that are mutually exclusive with BRCA1/2 alterations. Together, these results reveal a function of E4F1 in the DNA damage response that orchestrates proper signaling and repair of double-strand breaks and document a molecular mechanism for its essential role in maintaining genome integrity and cell survival.


Subject(s)
DNA Breaks, Double-Stranded , DNA Helicases/metabolism , DNA Repair , Nuclear Proteins/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Breast Neoplasms/genetics , Cell Proliferation , Cell Survival , Chromatin Assembly and Disassembly , DNA Damage , Gene Expression Regulation, Neoplastic , Gene Silencing , Homologous Recombination , Humans , Protein Binding , Repressor Proteins/deficiency , Signal Transduction , Ubiquitin-Protein Ligases/deficiency
10.
Cell Stem Cell ; 28(1): 48-62.e6, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33417871

ABSTRACT

Human hematopoietic stem cells (HSCs) exhibit attrition of their self-renewal capacity when cultured ex vivo, a process that is partially reversed upon treatment with epigenetic modifiers, most notably inhibitors of histone deacetylases (HDACs) or lysine-specific demethylase LSD1. A recent study showed that the human HSC self-renewal agonist UM171 modulates the CoREST complex, leading to LSD1 degradation, whose inhibition mimics the activity of UM171. The mechanism underlying the UM171-mediated loss of CoREST function remains undetermined. We now report that UM171 potentiates the activity of a CULLIN3-E3 ubiquitin ligase (CRL3) complex whose target specificity is dictated by the poorly characterized Kelch/BTB domain protein KBTBD4. CRL3KBTBD4 targets components of the LSD1/RCOR1 corepressor complex for proteasomal degradation, hence re-establishing H3K4me2 and H3K27ac epigenetic marks, which are rapidly decreased upon ex vivo culture of human HSCs.


Subject(s)
Co-Repressor Proteins , Epigenesis, Genetic , Hematopoietic Stem Cells , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Hematopoietic Stem Cells/metabolism , Histone Deacetylases/metabolism , Humans
11.
Transplant Cell Ther ; 27(1): 76.e1-76.e9, 2021 01.
Article in English | MEDLINE | ID: mdl-33022376

ABSTRACT

Rapid T cell reconstitution following hematopoietic stem cell transplantation (HSCT) is essential for protection against infections and has been associated with lower incidence of chronic graft-versus-host disease (cGVHD), relapse, and transplant-related mortality (TRM). While cord blood (CB) transplants are associated with lower rates of cGVHD and relapse, their low stem cell content results in slower immune reconstitution and higher risk of graft failure, severe infections, and TRM. Recently, results of a phase I/II trial revealed that single UM171-expanded CB transplant allowed the use of smaller CB units without compromising engraftment (www.clinicaltrials.gov, NCT02668315). We assessed T cell reconstitution in patients who underwent transplantation with UM171-expanded CB grafts and retrospectively compared it to that of patients receiving unmanipulated CB transplants. While median T cell dose infused was at least 2 to 3 times lower than that of unmanipulated CB, numbers and phenotype of T cells at 3, 6, and 12 months post-transplant were similar between the 2 cohorts. T cell receptor sequencing analyses revealed that UM171 patients had greater T cell diversity and higher numbers of clonotypes at 12 months post-transplant. This was associated with higher counts of naive T cells and recent thymic emigrants, suggesting active thymopoiesis and correlating with the demonstration that UM171 expands common lymphoid progenitors in vitro. UM171 patients also showed rapid virus-specific T cell reactivity and significantly reduced incidence of severe infections. These results suggest that UM171 patients benefit from rapid T cell reconstitution, which likely contributes to the absence of moderate/severe cGVHD, infection-related mortality, and late TRM observed in this cohort.


Subject(s)
Cord Blood Stem Cell Transplantation , Graft vs Host Disease , Cord Blood Stem Cell Transplantation/adverse effects , Fetal Blood , Humans , Retrospective Studies , T-Lymphocytes
12.
Lancet Haematol ; 7(2): e134-e145, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31704264

ABSTRACT

BACKGROUND: Benefits of cord blood transplantation include low rates of relapse and chronic graft-versus-host disease (GVHD). However, the use of cord blood is rapidly declining because of the high incidence of infections, severe acute GVHD, and transplant-related mortality. UM171, a haematopoietic stem cell self-renewal agonist, has been shown to expand cord blood stem cells and enhance multilineage blood cell reconstitution in mice. We aimed to investigate the safety and feasibility of single UM171-expanded cord blood transplantation in patients with haematological malignancies who do not have a suitable HLA-matched donor. METHODS: This single-arm, open-label, phase 1-2 safety and feasibility study was done at two hospitals in Canada. The study had two parts. In part 1, patients received two cord blood units (one expanded with UM171 and one unmanipulated cord blood) until UM171-expanded cord blood demonstrated engraftment. Once engraftment was documented we initiated part 2, reported here, in which patients received a single UM171-expanded cord blood unit with a dose de-escalation design to determine the minimal cord blood unit cell dose that achieved prompt engraftment. Eligible patients were aged 3-64 years, weighed 12 kg or more, had a haematological malignancy with an indication for allogeneic hematopoietic stem cell transplant and did not have a suitable HLA-matched donor, and a had a Karnofsky performance status score of 70% or more. Five clinical sites were planned to participate in the study; however, only two study sites opened, both of which only treated adult patients, thus no paediatric patients (aged <18 years) were recruited. Patients aged younger than 50 years without comorbidities received a myeloablative conditioning regimen (cyclophosphamide 120 mg/kg, fludarabine 75 mg/m2, and 12 Gy total body irradiation) and patients aged older than 50 years and those with comorbidities received a less myeloablative conditioning regimen (cyclophosphamide 50 mg/kg, thiotepa 10 mg/kg, fludarabine 150 mg/m2, and 4 Gy total body irradiation). Patients were infused with the 7-day UM171-expanded CD34-positive cells and the lymphocyte-containing CD34-negative fraction. The primary endpoints were feasibility of UM171 expansion, safety of the transplant, kinetics of hematopoietic reconstitution (time to neutrophil and platelet engraftment) of UM171-expanded cord blood, and minimal pre-expansion cord blood unit cell dose that achieved prompt engraftment. We analysed feasibility in all enrolled patients and all other primary outcomes were analysed per protocol, in all patients who received single UM171-expanded cord blood transplantation. This trial has been completed and was registered with ClinicalTrials.gov, NCT02668315. FINDINGS: Between Feb 17, 2016, and Nov 11, 2018, we enrolled 27 patients, four of whom received two cord blood units for safety purposes in part 1 of the study. 23 patients were subsequently enrolled in part 2 to receive a single UM171-expanded cord blood transplant and 22 patients received a single UM171-expanded cord blood transplantation. At data cutoff (Dec 31, 2018), median follow-up was 18 months (IQR 12-22). The minimal cord blood unit cell dose at thaw that achieved prompt engraftment as a single cord transplant after UM171 expansion was 0·52 × 105 CD34-positive cells. We successfully expanded 26 (96%) of 27 cord blood units with UM171. Among the 22 patients who received single UM171-expanded cord blood transplantation, median time to engraftment of 100 neutrophils per µL was 9·5 days (IQR 8-12), median time to engraftment of 500 neutrophils per µL was 18 days (12·5-20·0), and no graft failure occurred. Median time to platelet recovery was 42 days (IQR 35-47). The most common non-haematological adverse events were grade 3 febrile neutropenia (16 [73%] of 22 patients) and bacteraemia (nine [41%]). No unexpected adverse events were observed. One (5%) of 22 patients died due to treatment-related diffuse alveolar haemorrhage. INTERPRETATION: Our preliminary findings suggest that UM171 cord blood stem cell expansion is feasible, safe, and allows for the use of small single cords without compromising engraftment. UM171-expanded cord blood might have the potential to overcome the disadvantages of other cord blood transplants while maintaining the benefits of low risk of chronic GVHD and relapse, and warrants further investigation in randomised trials. FUNDING: Canadian Institutes of Health Research, Canadian Cancer Society and Stem Cell Network.


Subject(s)
Cord Blood Stem Cell Transplantation/methods , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/drug effects , Indoles/pharmacology , Pyrimidines/pharmacology , Adolescent , Adult , Cell Self Renewal/drug effects , Cells, Cultured/drug effects , Cells, Cultured/transplantation , Cord Blood Stem Cell Transplantation/adverse effects , Disease-Free Survival , Feasibility Studies , Febrile Neutropenia/etiology , Female , Graft Survival , Graft vs Host Disease/etiology , Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cells/cytology , Humans , Infant, Newborn , Male , Middle Aged , Proportional Hazards Models , Treatment Outcome , Young Adult
13.
PLoS One ; 14(11): e0224900, 2019.
Article in English | MEDLINE | ID: mdl-31703090

ABSTRACT

Elucidation of the molecular cues required to balance adult stem cell self-renewal and differentiation is critical for advancing cellular therapies. Herein, we report that the hematopoietic stem cell (HSC) self-renewal agonist UM171 triggers a balanced pro- and anti-inflammatory/detoxification network that relies on NFKB activation and protein C receptor-dependent ROS detoxification, respectively. We demonstrate that within this network, EPCR serves as a critical protective component as its deletion hypersensitizes primitive hematopoietic cells to pro-inflammatory signals and ROS accumulation resulting in compromised stem cell function. Conversely, abrogation of the pro-inflammatory activity of UM171 through treatment with dexamethasone, cAMP elevating agents or NFkB inhibitors abolishes EPCR upregulation and HSC expansion. Together, these results show that UM171 stimulates ex vivo HSC expansion by establishing a critical balance between key pro- and anti-inflammatory mediators of self-renewal.


Subject(s)
Cell Self Renewal/drug effects , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Homeostasis/drug effects , Indoles/pharmacology , Pyrimidines/pharmacology , Biomarkers , Cell Differentiation , Cell Proliferation , Gene Expression Profiling , Humans , Metabolic Detoxication, Phase I , Reactive Oxygen Species , Signal Transduction/drug effects , Transcriptome
14.
Cell Rep ; 28(4): 1063-1073.e5, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31340144

ABSTRACT

Transplantation of expanded hematopoietic stem cells (HSCs) and gene therapy based on HSC engineering have emerged as promising approaches for the treatment of hematological diseases. Nevertheless, the immunophenotype of cultured HSCs remains poorly defined. Here, we identify Integrin-α3 (ITGA3) as a marker of cultured human HSCs. Exploiting the pyrimidoindole derivative UM171 to expand cord blood (CB) cells, we show that ITGA3 expression is sufficient to separate the primitive EPCR+CD90+CD133+CD34+CD45RA- HSC population into two functionally distinct fractions presenting mostly short-term (ITGA3-) and both short-term and long-term (ITGA3+) repopulating potential. ITGA3+ cells exhibit robust multilineage differentiation potential, serial reconstitution ability in immunocompromised mice, and an HSC-specific transcriptomic signature. Moreover, ITGA3 expression is functionally required for the long-term engraftment of CB cells. Altogether, our results indicate that ITGA3 is a reliable marker of cultured human long-term repopulating HSCs (LT-HSCs) and represents an important tool to improve the accuracy of prospective HSC identification in culture.


Subject(s)
Biomarkers/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Integrin alpha3/metabolism , Animals , Antigens, CD34/metabolism , Cell Proliferation , Cell Self Renewal , Down-Regulation , Fetal Blood/cytology , Gene Expression Profiling , Humans , Mice , Phenotype , Proto-Oncogene Proteins c-myc/metabolism
15.
Nucleic Acids Res ; 47(14): 7532-7547, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31219578

ABSTRACT

Fanconi Anemia (FA) clinical phenotypes are heterogenous and rely on a mutation in one of the 22 FANC genes (FANCA-W) involved in a common interstrand DNA crosslink-repair pathway. A critical step in the activation of FA pathway is the monoubiquitination of FANCD2 and its binding partner FANCI. To better address the clinical phenotype associated with FANCI and the epistatic relationship with FANCD2, we created the first conditional inactivation model for FANCI in mouse. Fanci -/- mice displayed typical FA features such as delayed development in utero, microphtalmia, cellular sensitivity to mitomycin C, occasional limb abnormalities and hematological deficiencies. Interestingly, the deletion of Fanci leads to a strong meiotic phenotype and severe hypogonadism. FANCI was localized in spermatocytes and spermatids and in the nucleus of oocytes. Both FANCI and FANCD2 proteins co-localized with RPA along meiotic chromosomes, albeit at different levels. Consistent with a role in meiotic recombination, FANCI interacted with RAD51 and stimulated D-loop formation, unlike FANCD2. The double knockout Fanci-/- Fancd2-/- also showed epistatic relationship for hematological defects while being not epistatic with respect to generating viable mice in crosses of double heterozygotes. Collectively, this study highlights common and distinct functions of FANCI and FANCD2 during mouse development, meiotic recombination and hematopoiesis.


Subject(s)
DNA Repair , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia/genetics , Animals , Cells, Cultured , Disease Models, Animal , Fanconi Anemia/metabolism , Fanconi Anemia/pathology , Fanconi Anemia Complementation Group D2 Protein/metabolism , Fanconi Anemia Complementation Group Proteins/metabolism , Female , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Oocytes/metabolism , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Spermatocytes/metabolism
16.
Mol Ther Methods Clin Dev ; 10: 156-164, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30101153

ABSTRACT

Enhanced gene transfer efficiencies and higher yields of transplantable transduced human hematopoietic stem cells are continuing goals for improving clinical protocols that use stemcell-based gene therapies. Here, we examined the effect of the HSC agonist UM171 on these endpoints in both in vitro and in vivo systems. Using a 22-hr transduction protocol, we found that UM171 significantly enhances both the lentivirus-mediated transduction and yield of CD34+ and CD34+CD45RA- hematopoietic cells from human cord blood to give a 6-fold overall higher recovery of transduced hematopoietic stem cells, including cells with long-term lympho-myeloid repopulating activity in immunodeficient mice. The ability of UM171 to enhance gene transfer to primitive cord blood hematopoietic cells extended to multiple lentiviral pseudotypes, gamma retroviruses, and non-integrating lentiviruses and to adult bone marrow cells. UM171, thus, provides an interesting reagent for improving the ex vivo production of gene-modified cells and for reducing requirements of virus for a broad range of applications.

17.
Leukemia ; 32(6): 1349-1357, 2018 06.
Article in English | MEDLINE | ID: mdl-29550835

ABSTRACT

Acute promyelocytic leukemia (APL) is a medical emergency because of associated lethal early bleeding, a condition preventable by prompt diagnosis and therapeutic intervention. The mechanisms underlying the hemostatic anomalies of APL are not completely elucidated. RNA-sequencing-based characterization of APL (n = 30) was performed and compared to that of other acute myeloid leukemia (n = 400) samples and normal promyelocytes. Perturbations in the transcriptome of coagulation and fibrinolysis-related genes in APL extend beyond known culprits and now include Thrombin, Factor X and Urokinase Receptor. Most intriguingly, the Podoplanin (PDPN) gene, involved in platelet aggregation, is aberrantly expressed in APL promyelocytes and is the most distinctive transcript for this disease. Using an antibody panel optimized for AML diagnosis by flow cytometry, we also found that PDPN was the most specific surface marker for APL, and that all-trans retinoic acid therapy rapidly decreases its expression. Functional studies showed that engineered overexpression of this gene in human leukemic cells causes aberrant platelet binding, activation and aggregation. PDPN-expressing primary APL cells, but not PDPN-negative primary leukemias, specifically induce platelet binding, activation and aggregation. Finally, PDPN expression on leukemia cells in a xenograft model was associated with thrombocytopenia and prolonged bleeding time in vivo. Together our results suggest that PDPN may contribute to the hemostatic perturbations found in APL.


Subject(s)
Hemorrhage/etiology , Leukemia, Promyelocytic, Acute/complications , Membrane Glycoproteins/physiology , Transcriptome , Adult , Aged , Animals , Female , Flow Cytometry , Humans , Leukemia, Promyelocytic, Acute/genetics , Male , Membrane Glycoproteins/genetics , Mice , Middle Aged , Platelet Aggregation , Thrombocytopenia/etiology , Tretinoin/pharmacology
18.
Blood ; 130(20): 2204-2214, 2017 11 16.
Article in English | MEDLINE | ID: mdl-28855157

ABSTRACT

Neomorphic missense mutations affecting crucial lysine residues in histone H3 genes significantly contribute to a variety of solid cancers. Despite the high prevalence of H3K27M mutations in pediatric glioblastoma and their well-established impact on global histone H3 lysine 27 di- and trimethylation (H3K27me2/3), the relevance of these mutations has not been studied in acute myeloid leukemia (AML). Here, we report the first identification of H3K27M and H3K27I mutations in patients with AML. We find that these lesions are major determinants of reduced H3K27me2/3 in these patients and that they are associated with common aberrations in the RUNX1 gene. We demonstrate that H3K27I/M mutations are strong disease accelerators in a RUNX1-RUNX1T1 AML mouse model, suggesting that H3K27me2/3 has an important and selective leukemia-suppressive activity in this genetic context.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Histones/genetics , Leukemia, Myeloid, Acute/genetics , Mutation, Missense , Transformation, Genetic , Adolescent , Aged, 80 and over , Animals , DNA Methylation , Female , Humans , Lysine/metabolism , Male , Mice , Middle Aged , Oncogene Proteins, Fusion/genetics , RUNX1 Translocation Partner 1 Protein/genetics , Sequence Analysis, DNA
19.
Clin Cancer Res ; 23(22): 6969-6981, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28855357

ABSTRACT

Purpose:RUNX1-mutated (RUNX1mut) acute myeloid leukemia (AML) is associated with adverse outcome, highlighting the urgent need for a better genetic characterization of this AML subgroup and for the design of efficient therapeutic strategies for this disease. Toward this goal, we further dissected the mutational spectrum and gene expression profile of RUNX1mut AML and correlated these results to drug sensitivity to identify novel compounds targeting this AML subgroup.Experimental Design: RNA-sequencing of 47 RUNX1mut primary AML specimens was performed and sequencing results were compared to those of RUNX1 wild-type samples. Chemical screens were also conducted using RUNX1mut specimens to identify compounds selectively affecting the viability of RUNX1mut AML.Results: We show that samples with no remaining RUNX1 wild-type allele are clinically and genetically distinct and display a more homogeneous gene expression profile. Chemical screening revealed that most RUNX1mut specimens are sensitive to glucocorticoids (GCs) and we confirmed that GCs inhibit AML cell proliferation through their interaction with the glucocorticoid receptor (GR). We observed that specimens harboring RUNX1 mutations expected to result in low residual RUNX1 activity are most sensitive to GCs, and that coassociating mutations as well as GR levels contribute to GC sensitivity. Accordingly, acquired glucocorticoid sensitivity was achieved by negatively regulating RUNX1 expression in human AML cells.Conclusions: Our findings show the profound impact of RUNX1 allele dosage on gene expression profile and glucocorticoid sensitivity in AML, thereby opening opportunities for preclinical testing which may lead to drug repurposing and improved disease characterization. Clin Cancer Res; 23(22); 6969-81. ©2017 AACR.


Subject(s)
Alleles , Core Binding Factor Alpha 2 Subunit/genetics , Drug Resistance, Neoplasm/genetics , Gene Dosage , Glucocorticoids/pharmacology , Leukemia, Myeloid, Acute/genetics , Mutation , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Female , Gene Expression Regulation, Leukemic , Gene Silencing , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged
20.
FASEB J ; 31(11): 5012-5018, 2017 11.
Article in English | MEDLINE | ID: mdl-28754713

ABSTRACT

The ubiquitin-associated protein 2-like (UBAP2L) gene remains poorly studied in human and mouse development. UBAP2L interacts with the Polycomb group protein B lymphoma Mo-MLV insertion region 1 homolog (BMI1) and determines the activity of mouse hematopoietic stem cells in vivo Here we show that loss of Ubap2l leads to disorganized respiratory epithelium of mutant neonates, which die of respiratory failure. We also show that UBAP2L overexpression leads to epithelial-mesenchymal transition-like phenotype in a non-small cell lung carcinoma (NSCLC) cell line. UBAP2L is amplified in 15% of human primary lung adenocarcinoma specimens. Such patients express higher levels of UBAP2L and show a reduction in survival when compared with those who do not have this gene amplification. Supporting a possible role for UBAP2L in lung tumor progression, NSCLC cells engineered to express low levels of this gene produce much smaller tumors in vivo than wild-type control cells. Together, these results suggest that UBAP2L contributes to epithelial lung cell identity in mice and that it plays an important role in human lung adenocarcinoma.-Aucagne, R., Girard, S., Mayotte, N., Lehnertz, B., Lopes-Paciencia, S., Gendron, P., Boucher, G., Chagraoui, J., Sauvageau, G. UBAP2L is amplified in a large subset of human lung adenocarcinoma and is critical for epithelial lung cell identity and tumor metastasis.


Subject(s)
Adenocarcinoma/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Carrier Proteins/biosynthesis , Epithelial Cells/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/metabolism , Neoplasm Proteins/biosynthesis , Respiratory Mucosa/metabolism , A549 Cells , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carrier Proteins/genetics , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Mice , Neoplasm Metastasis , Neoplasm Proteins/genetics , Respiratory Mucosa/pathology
SELECTION OF CITATIONS
SEARCH DETAIL