Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
J Agric Food Chem ; 72(9): 4679-4688, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38383292

ABSTRACT

Microplastics (MPs) are present in soil as emerging contaminants and pose a threat to soil as well as plants. Here, the effects of MPs on Chinese flowering cabbage from a microbiology perspective were explored. MP size and concentration significantly affected endophytic communities of plant root and petiole (p < 0.05). Under MP treatments, the root, petiole, and leaf exhibited a substantial abundance of pathogenic biomarkers, such as Pseudomonas, Burkholderia, Ralstonia, and Escherichia, resulting in the slow growth and morbidity of the plant. Difference analysis of metabolic pathways revealed that MPs significantly upregulated the pathogenic metabolic pathways (p < 0.05), and the presence of Vibrio infectious and pathogenic metabolic pathways was detected in all three niches of the plant. Moreover, MPs significantly inhibited the contents of carotenoids, iron, vitamin C, and calcium in edible niches of the plant (p < 0.05), and most of the high-abundant biomarkers were negatively correlated with their nutritional qualities.


Subject(s)
Brassica , Microplastics , Endophytes/genetics , Plastics/metabolism , Brassica/metabolism , Soil , Biomarkers/metabolism , China
2.
Sci Total Environ ; 812: 152489, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34942255

ABSTRACT

This work shows the existence of both 17-ethinylestradiol-3-sulfate (EE2-3S) and 17-ethinylestradiol-3-glucuronide (EE2-3G) in seven municipal WWTPs with substantial concentrations (n.d-50.10 ng/L). The calculated removal efficiencies of 17-ethinylestradiol (EE2) in the seven municipal WWTPs ranged from 40.8%-100% with an average removal efficiency of 83.3%. However, upon the inclusion of EE2 concentration transformed from EE2-3S and EE2-3G, the corresponding removal efficiencies were increased to 91.4%-100% with an average removal efficiency of 97.3%. This work is the first to clearly illustrate that EE2 conjugates in raw wastewater could greatly underestimate the removal effectiveness of municipal WWTPs on EE2, indicating the importance of the EE2 conjugates in municipal wastewater having been hardly paid with attention. The EE2-derived estrogen equivalence (EEQ) values in the effluents of seven WWTPs ranged from 0 to 0.98 ng E2/L having an average level of 0.45 ng E2/L, which were relatively low. However, upon the inclusion of EE2 transformable from EE2-3S and EE2-3G in effluents, the EE2-derived EEQ values in effluents would be increased to 0.77-4.85 ng E2/L having an average level of 2.71 ng E2/L, which clearly suggested that ignorance of EE2 conjugates in effluent would largely underestimate EE2's environmental risk to receiving water bodies.


Subject(s)
Water Pollutants, Chemical , Water Purification , Estrogens , Ethinyl Estradiol/analysis , Waste Disposal, Fluid , Wastewater/analysis , Water Pollutants, Chemical/analysis
3.
Huan Jing Ke Xue ; 42(3): 1073-1080, 2021 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-33742903

ABSTRACT

Microplastic pollution is ubiquitous and has attracted significant public attention. Recent research on microplastic has focused on aquatic environments, but its impacts on soil ecosystems remain poorly understood, especially in e-waste dismantling zones. The objective of this study was to investigate the relationships between microplastic and surrounding soil in abandoned e-waste disassembling plots with different dismantling methods focusing on ecotoxicology and microbiology in Guiyu, Shantou District, Guangdong Province. The surface morphology of collected microplastics showed signs of aging and degradation, possibly due to their long-term exposure in the soil and the original disassembling methods. In addition, there were diverse metal elements at different surface positions of the same microplastic sample based on SEM-EDS analyses, indicating that some metal elements carried by microplastics are derived from the surrounding soil rather than being inherent to the microplastic. Moreover, seven heavy metals (Pb, Cd, Cr, As, Ba, Co, and Ni) inherent in microplastic were identified using ICP-OES, revealing that the concentrations varied in different sampling plots were typically higher than in the surrounding soil. In particular, the concentration of Ba in microplastic was 103 orders of magnitude higher than in soil. Indeed, Ba in the form of BaSO4 is widely used as a filler in numerous plastics. Furthermore, microplastic-associated microorganisms were examined using 16S rRNA sequencing, and the relationships between the top 50 genera of microplastic-bound bacteria and soil environmental factors were analyzed using the Spearman's rank correlation coefficient. Microorganisms primarily originated from the surroundings of microplastics; therefore, environmental factors could directly affect the microbial communities associated with this type of pollutant. Importantly, different dismantling methods were associated with distinct soil environmental factors, and their correlations with microplastic-associated microorganisms also varied.

4.
Waste Manag ; 118: 291-301, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32919348

ABSTRACT

Microplastic pollution is ubiquitous and has emerged as a severe global environmental issue. Recent research on microplastic pollution has mainly focused on aquatic ecosystems, while knowledge gaps still exist regarding microplastic in terrestrial environments. In this study, we established a new method for characterizing microplastic in complex soil substrate using FTIR spectroscopy. Microplastic was separated by density without removing soil organic matter to protect microplastic from damage. The Wizards feature was adopted to automatic, direct and continuous characterize micron-size plastic. Furthermore, 33 soil samples were taken from Guiyu, a notorious e-waste dismantling area in Guangdong Province, China, under different land-use. The results showed that microplastic was involved in 30 samples, and the abundance of microplastic varied considerably among different soils, ranged from 0 to 34,100n kg-1, implying that the e-waste dismantling sites have become the microplastic hotspots. There were 60 kinds of microplastic detected with 6 different shapes and 10 colors, most of which were secondary microplastic. They mainly consisted of engineering-plastic and modified plastic, 88.61% had a size range <1 mm, indicating that the majority of microplastics at Guiyu were derived from e-wastes. The surface morphology of microplastic showed signs of aging and degradation, possibly due to primitive dismantling methods and long-term exposure to the soil. The mean Pb, Cd, Cr, Ba, Cu, Co, As concentrations of microplastic were 20.94, 0.67, 11.82, 308.78, 4.11, 1.26, 3.06 µg·g-1, respectively. Our findings providescientific basis for monitoring and controlling microplastic pollution in terrestrial environments.


Subject(s)
Electronic Waste , Soil Pollutants , China , Ecosystem , Environmental Monitoring , Microplastics , Plastics , Soil , Soil Pollutants/analysis
5.
Ecotoxicol Environ Saf ; 195: 110521, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32222597

ABSTRACT

Recent studies of microplastic have focused on aquatic environment, but its impacts on soil ecosystems were poorly understood, particularly on bacterial communities. In this study, the bacterial taxon and functional composition of soil microplastic-attached communities at Guiyu, a notorious e-waste dismantling area in Guangdong Province, China, were investigated by means of high-throughput sequencing. The results revealed that fundamental difference in bacterial communities existed among microplastics selected from three plots with different dismantling methods and their surroundings, suggesting that microplastic surface created a new ecological niche in soil environment, and the bacteria adapted well to the surface-related lifestyle. The formation of microplastic-attached bacteria depended not only on various dismantled plastic materials, but also on disassembly methods that caused different soil physicochemical characters which might also influence the bacterial communities. As the hydrocarbon degraders, the family Hyphomonadaceae were also found on soil microplastic, further confirming that microorganisms played a role in biodegrading microplastic in e-waste zone. The analysis of functional profiles speculated that microplastic-attached bacteria had the potential to degrade pollutants. This study provides a new perspective for exploring microplastic-associated bacteria and increasing our understanding of microplastic pollution in terrestrial ecosystems.


Subject(s)
Electronic Waste/analysis , Environmental Monitoring/methods , Microplastics/analysis , Soil Microbiology , Soil Pollutants/analysis , Soil/chemistry , Bacteria/growth & development , Bacteria/isolation & purification , Biodegradation, Environmental , China , Ecosystem , RNA, Ribosomal, 16S
SELECTION OF CITATIONS
SEARCH DETAIL
...