Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Eur J Pharmacol ; 970: 176483, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38479721

ABSTRACT

Stromal derived factor 1 (SDF1) has been shown to be involved in the pathogenesis of pulmonary artery hypertension (PAH). However, the detailed molecular mechanisms remain unclear. To address this, we utilized primary cultured rat pulmonary artery smooth muscle cells (PASMCs) and monocrotaline (MCT)-induced PAH rat models to investigate the mechanisms of SDF1 driving PASMCs proliferation and pulmonary arterial remodeling. SDF1 increased runt-related transcription factor 2 (Runx2) acetylation by Calmodulin (CaM)-dependent protein kinase II (CaMKII)-dependent HDAC4 cytoplasmic translocation, elevation of Runx2 acetylation conferred its resistance to proteasome-mediated degradation. The accumulation of Runx2 further upregulated osteopontin (OPN) expression, finally leading to PASMCs proliferation. Blocking SDF1, suppression of CaMKII, inhibition the nuclear export of HDAC4 or silencing Runx2 attenuated pulmonary arterial remodeling and prevented PAH development in MCT-induced PAH rat models. Our study provides novel sights for SDF1 induction of PASMCs proliferation and suggests that targeting SDF1/CaMKII/HDAC4/Runx2 axis has potential value in the management of PAH.


Subject(s)
Pulmonary Arterial Hypertension , Rats , Animals , Pulmonary Arterial Hypertension/pathology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Vascular Remodeling/physiology , Cell Proliferation , Pulmonary Artery/pathology , Familial Primary Pulmonary Hypertension/pathology , Myocytes, Smooth Muscle , Monocrotaline/adverse effects , Disease Models, Animal , Histone Deacetylases/metabolism
2.
Heliyon ; 10(5): e27065, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38495138

ABSTRACT

Background: Ischemic heart disease (IHD) is the leading cause of death worldwide. High fasting plasma glucose (FPG) is an increasing risk factor for IHD. We aimed to explore the long-term trends of high FPG-attributed IHD mortality during 1990-2019. Methods: Data were obtained from the Global Burden of Disease Study 2019 database. Deaths, disability-adjusted life-years (DALYs), the age-standardized mortality rate (ASMR) and age-standardized DALY rate (ASDR) of IHD attributable to high FPG were estimated by sex, socio-demographic index (SDI), regions and age. Estimated annual percentage changes (EAPCs) were calculated to assess the trends of ASMR and ASDR of IHD attributable to high FPG. Results: IHD attributable to high FPG deaths increased from 1.04 million (0.62-1.63) in 1990 to 2.35 million (1.4-3.7) in 2019, and the corresponding DALYs rose from 19.82 million (12.68-29.4) to 43.3 million (27.8-64.2). In 2019, ASMR and ASDR of IHD burden attributable to high FPG were 30.45 (17.09-49.03) and 534.8 (340.7-792.2), respectively. The highest ASMR and ASDR of IHD attributable to high FPG occurred in low-middle SDI quintiles, with 39.28 (22.40-62.76) and 742.3 (461.5-1117.5), respectively, followed by low SDI quintiles and middle SDI quintiles. Males had higher ASMR and ASDR compared to females across the past 30 years. In addition, ASRs of DALYs and deaths were highest in those over 95 years old. Conclusion: High FPG-attributed IHD mortality and DALYs have increased dramatically and globally, particularly in low, low-middle SDI quintiles and among the elderly. High FPG remains a great concern on the global burden of IHD and effective prevention and interventions are urgently needed to curb the ranking IHD burden, especially in lower SDI regions.

3.
Eur J Clin Microbiol Infect Dis ; 43(4): 747-765, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367094

ABSTRACT

PURPOSE: High fasting plasma glucose (HFPG) has been identified as a risk factor for drug-resistant tuberculosis incidence and mortality. However, the epidemic characteristics of HFPG-attributable multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) remain unclear. We aimed to analyze the global spatial patterns and temporal trends of HFPG-attributable MDR-TB and XDR-TB from 1990 to 2019. METHODS: Utilizing data from the Global Burden of Disease 2019 project, annual deaths and disability-adjusted life years (DALYs) of HFPG-attributable MDR-TB and XDR-TB were conducted from 1990 to 2019. Joinpoint regression was employed to quantify trends over time. RESULTS: From 1990 to 2019, the deaths and DALYs due to HFPG-attributable MDR-TB and XDR-TB globally showed an overall increasing trend, with a significant increase until 2003 to 2004, followed by a gradual decline or stability thereafter. The low sociodemographic index (SDI) region experienced the most significant increase over the past 30 years. Regionally, Sub-Saharan Africa, Central Asia and Oceania remained the highest burden. Furthermore, there was a sex and age disparity in the burden of HFPG-attributable MDR-TB and XDR-TB, with young males in the 25-34 age group experiencing higher mortality, DALYs burden and a faster increasing trend than females. Interestingly, an increasing trend followed by a stable or decreasing pattern was observed in the ASMR and ASDR of HFPG-attributable MDR-TB and XDR-TB with SDI increasing. CONCLUSION: The burden of HFPG-attributable MDR-TB and XDR-TB rose worldwide from 1990 to 2019. These findings emphasize the importance of routine bi-directional screening and integrated management for drug-resistant TB and diabetes.


Subject(s)
Extensively Drug-Resistant Tuberculosis , Tuberculosis, Multidrug-Resistant , Male , Female , Humans , Blood Glucose , Retrospective Studies , Global Burden of Disease , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/diagnosis , Fasting
4.
Eur J Pharmacol ; 961: 176151, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37914064

ABSTRACT

Nicotinamide phosphoribosyltransferase (NAMPT), a pleiotropic protein, promotes the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs), which is associated with the genesis and progression of pulmonary arterial hypertension (PAH). NAMPT is highly increased in PAH patient's plasma and highly relevant to PAH severity. The mRNA and protein levels of NAMPT are elevated in PAH animal models. However, the underlying molecular mechanisms how NAMPT mediated platelet-derived growth factor (PDGF)-induced PASMCs proliferation are still unclear. The present study aimed to address these issues. Primary cultured PASMCs were attained from male Sprague-Dawley (SD) rats. Western blotting, RT-PCR, ELISA, cell transfection, Cell Counting Kit-8 (CCK-8) and EdU incorporation assays were used in the experiments. We showed that PDGF upregulated NAMPT expression through the activation of signal transducers and activators of transcription 5 (STAT5), and elevated extracellular NAMPT further promoted the activation of NF-κB through Toll-like receptor 4 (TLR4), which ultimately upregulated polo-like kinase 4 (PLK4) expression leading to PASMCs proliferation. Knockdown of STAT5, NAMPT or PLK4, and inhibition of TLR4 or NF-κB suppressed PDGF-induced PASMCs proliferation. Our study suggests that NAMPT plays an essential role in PDGF-induced PASMCs proliferation via TLR4/NF-κB/PLK4 pathway, suggesting that targeting NAMPT might be valuable in ameliorating pulmonary arterial hypertension.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Humans , Rats , Animals , Male , Platelet-Derived Growth Factor/metabolism , Pulmonary Artery/metabolism , Pulmonary Arterial Hypertension/metabolism , NF-kappa B/metabolism , Rats, Sprague-Dawley , Cell Proliferation , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , STAT5 Transcription Factor/adverse effects , STAT5 Transcription Factor/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Signal Transduction , Myocytes, Smooth Muscle/metabolism , Cells, Cultured
5.
BMJ Open ; 13(9): e074134, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770275

ABSTRACT

OBJECTIVE: This study aimed to analyse the burden and temporal trends of tuberculosis (TB) incidence and mortality globally, as well as the association between mortality-to-incidence ratio (MIR) and Socio-Demographic Index (SDI). DESIGN: A retrospective analysis of TB data from 1990 to 2019 was conducted using the Global Burden of Disease Study database. RESULTS: Between 1990 and 2019, there was a declining trend in the global incidence and mortality of TB. High SDI regions experienced a higher declining rate than in low SDI regions during the same period. Nearly half of the new patients occurred in South Asia. In addition, there is a sex-age imbalance in the overall burden of TB, with young males having higher incidence and mortality than females. In terms of the three subtypes of TB, drug-sensitive (DS)-TB accounted for more than 90% of the incidents and deaths and experienced a decline over the past 30 years. However, drug-resistant TB (multidrug-resistant (MDR)-TB and extensively drug-resistant (XDR)-TB) showed an overall increasing trend in age-standardised incidence rates and age-standardised mortality rates, with an inflection point after the year 2000. At the regional level, South Asia and Eastern Europe remained a high burden of drug-resistant TB incidence and mortality. Interestingly, a negative correlation was found between the MIR and SDI for TB, including DS-TB, MDR-TB and XDR-TB. Notably, central sub-Saharan Africa had the highest MIR, which indicated a higher-than-expected burden given its level of sociodemographic development. CONCLUSION: This study provides comprehensive insights into the global burden and temporal trends of TB incidence and mortality, as well as the relationship between MIR and SDI. These findings contribute to our understanding of TB epidemiology and can inform public health strategies for prevention and management.


Subject(s)
HIV Infections , Tuberculosis, Multidrug-Resistant , Tuberculosis , Male , Female , Humans , Global Burden of Disease , Retrospective Studies , Tuberculosis/epidemiology , Incidence , Global Health , HIV Infections/epidemiology
6.
Respir Res ; 24(1): 216, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37674165

ABSTRACT

BACKGROUND: Macrophage migration inhibitory factor (MIF) and GTPase dynamin-related protein 1 (Drp1)-dependent aberrant mitochondrial fission are closely linked to the pathogenesis of asthma. However, it is unclear whether Drp1-mediated mitochondrial fission and its downstream targets mediate MIF-induced proliferation of airway smooth muscle cells (ASMCs) in vitro and airway remodeling in chronic asthma models. The present study aims to clarify these issues. METHODS: In this study, primary cultured ASMCs and ovalbumin (OVA)-induced asthmatic rats were applied. Cell proliferation was detected by CCK-8 and EdU assays. Western blotting was used to detect extracellular signal-regulated kinase (ERK) 1/2, Drp1, autophagy-related markers and E-cadherin protein phosphorylation and expression. Inflammatory cytokines production, airway reactivity test, histological staining and immunohistochemical staining were conducted to evaluate the development of asthma. Transmission electron microscopy was used to observe the mitochondrial ultrastructure. RESULTS: In primary cultured ASMCs, MIF increased the phosphorylation level of Drp1 at the Ser616 site through activation of the ERK1/2 signaling pathway, which further activated autophagy and reduced E-cadherin expression, ultimately leading to ASMCs proliferation. In OVA-induced asthmatic rats, MIF inhibitor 4-iodo-6-phenylpyrimidine (4-IPP) treatment, suppression of mitochondrial fission by Mdivi-1 or inhibiting autophagy with chloroquine phosphate (CQ) all attenuated the development of airway remodeling. CONCLUSIONS: The present study provides novel insights that MIF promotes airway remodeling in asthma by activating autophagy and degradation of E-cadherin via ERK/Drp1 signaling pathway, suggesting that targeting MIF/ERK/Drp1 might have potential therapeutic value for the prevention and treatment of asthma.


Subject(s)
Asthma , Macrophage Migration-Inhibitory Factors , Animals , Rats , Airway Remodeling , Dynamins , Asthma/chemically induced , Autophagy , Cadherins
7.
Eur J Pharmacol ; 956: 175968, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37549728

ABSTRACT

To address the molecular mechanisms underlying macrophage migration inhibitory factor (MIF) induced pulmonary artery smooth muscle cells (PASMCs) proliferation, migration and vascular remodeling in pulmonary hypertension (PH), primary cultured rat PASMCs and monocrotaline (MCT)-induced rats with PH were applied in the present study. The results showed that MIF increased signal transducer and activator of transcription 3 (STAT3) phosphorylation, and then stimulated activating transcription factor 6 (ATF6) activation, subsequently triggered autophagy activation, which further led to programmed cell death factor 4 (PDCD4) lysosomal degradation, and eventually promoted PASMCs proliferation/migration. In lung tissues of MCT rats, MIF protein expression was elevated, phosphorylation of STAT3 and activation of ATF6 were increased, activation of autophagy was evident, and reduction of PDCD4 was observed. Intervention with MIF inhibitor 4-Iodo-6-phenylpyrimidine (4-IPP), ATF6 blocker melatonin or autophagy inhibitor chloroquine, confirmed the in vitro interaction among MIF, STAT3, ATF6, autophagy and PDCD4 in MCT induced rats with PH. Targeting MIF/STAT3/ATF6/autophagy/PDCD4 axis effectively prevented the development of PH by suppressing PASMCs proliferation and vascular remodeling. In conclusions, we demonstrate that MIF activates the STAT3/ATF6/autophagy cascade and then degrades PDCD4 leading to PASMCs proliferation/migration and pulmonary vascular remodeling, suggesting that intervention this axis might have potential value in management of PH.


Subject(s)
Apoptosis Regulatory Proteins , Hypertension, Pulmonary , Macrophage Migration-Inhibitory Factors , Animals , Rats , Activating Transcription Factor 6/metabolism , Autophagy/physiology , Cell Proliferation , Cells, Cultured , Down-Regulation , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/metabolism , STAT3 Transcription Factor/metabolism , Vascular Remodeling , Apoptosis Regulatory Proteins/genetics
8.
Respir Res ; 24(1): 149, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37268944

ABSTRACT

BACKGROUND: HMGB1 and ER stress have been considered to participate in the progression of pulmonary artery hypertension (PAH). However, the molecular mechanism underlying HMGB1 and ER stress in PAH remains unclear. This study aims to explore whether HMGB1 induces pulmonary artery smooth muscle cells (PASMCs) functions and pulmonary artery remodeling through ER stress activation. METHODS: Primary cultured PASMCs and monocrotaline (MCT)-induced PAH rats were applied in this study. Cell proliferation and migration were determined by CCK-8, EdU and transwell assay. Western blotting was conducted to detect the protein levels of protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor-4 (ATF4), seven in absentia homolog 2 (SIAH2) and homeodomain interacting protein kinase 2 (HIPK2). Hemodynamic measurements, immunohistochemistry staining, hematoxylin and eosin staining were used to evaluate the development of PAH. The ultrastructure of ER was observed by transmission electron microscopy. RESULTS: In primary cultured PASMCs, HMGB1 reduced HIPK2 expression through upregulation of ER stress-related proteins (PERK and ATF4) and subsequently increased SIAH2 expression, which ultimately led to PASMC proliferation and migration. In MCT-induced PAH rats, interfering with HMGB1 by glycyrrhizin, suppression of ER stress by 4-phenylbutyric acid or targeting SIAH2 by vitamin K3 attenuated the development of PAH. Additionally, tetramethylpyrazine (TMP), as a component of traditional Chinese herbal medicine, reversed hemodynamic deterioration and vascular remodeling by targeting PERK/ATF4/SIAH2/HIPK2 axis. CONCLUSIONS: The present study provides a novel insight to understand the pathogenesis of PAH and suggests that targeting HMGB1/PERK/ATF4/SIAH2/HIPK2 cascade might have potential therapeutic value for the prevention and treatment of PAH.


Subject(s)
HMGB1 Protein , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Rats , Animals , Pulmonary Artery/metabolism , Rats, Sprague-Dawley , HMGB1 Protein/metabolism , Pulmonary Arterial Hypertension/metabolism , Hypertension, Pulmonary/pathology , Cell Proliferation , Myocytes, Smooth Muscle/metabolism , Cells, Cultured , Monocrotaline , Protein Serine-Threonine Kinases
9.
Biomed Mater ; 18(4)2023 05 05.
Article in English | MEDLINE | ID: mdl-37144422

ABSTRACT

Increased life expectancy has resulted in an increase in osteoporosis incidence worldwide. The coupling of angiogenesis and osteogenesis is indispensable for bone repair. Although traditional Chinese medicine (TCM) exerts therapeutic effects on osteoporosis, TCM-related scaffolds, which focus on the coupling of angiogenesis and osteogenesis, have not yet been used for the treatment of osteoporotic bone defects.Panax notoginsengsaponin (PNS), the active ingredient ofPanax notoginseng, was added to a poly (L-lactic acid) (PLLA) matrix. Osteopractic total flavone (OTF), the active ingredient ofRhizoma Drynariae, was encapsulated in nano-hydroxyapatite/collagen (nHAC) and added to the PLLA matrix. Magnesium (Mg) particles were added to the PLLA matrix to overcome the bioinert character of PLLA and neutralize the acidic byproducts generated by PLLA. In this OTF-PNS/nHAC/Mg/PLLA scaffold, PNS was released faster than OTF. The control group had an empty bone tunnel; scaffolds containing OTF:PNS = 100:0, 50:50, and 0:100 were used as the treatment groups. Scaffold groups promoted new vessel and bone formation, increased the osteoid tissue, and suppressed the osteoclast activity around osteoporotic bone defects. Scaffold groups upregulated the expression levels of angiogenic and osteogenic proteins. Among these scaffolds, the OTF-PNS (50:50) scaffold exhibited a better capacity for osteogenesis than the OTF-PNS (100:0 and 0:100) scaffolds. Activation of the bone morphogenic protein (BMP)-2/BMP receptor (BMPR)-1A/runt-related transcription factor (RUNX)-2signaling pathway may be a possible mechanism for the promotion of osteogenesis. Our study demonstrated that the OTF-PNS/nHAC/Mg/PLLA scaffold could promote osteogenesis via the coupling of angiogenesis and osteogenesis in osteoporotic rats with bone defects, and activating theBMP-2/BMPR1A/RUNX2signaling pathway may be an osteogenesis-related mechanism. However, further experiments are necessary to facilitate its practical application in the treatment of osteoporotic bone defects.


Subject(s)
Osteogenesis , Osteoporosis , Rats , Animals , Tissue Engineering/methods , Tissue Scaffolds , Bone and Bones/metabolism , Polyesters/pharmacology , Osteoporosis/therapy , Osteoporosis/metabolism
10.
Heliyon ; 9(3): e14173, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36938425

ABSTRACT

Background: It has been demonstrated that elevated telomerase reverse transcriptase (TERT) expression or activity is implicated in pulmonary hypertension (PH). In addition, activation of peroxisome-proliferator-activated receptor γ (PPAR-γ) has been found to prevent PH progression. However, the molecular mechanism responsible for the protective effect of PPAR-γ activation on TERT expression in the pathogenesis of PH remains unknown. This study was performed to address these issues. Methods: Intraperitoneal injection of monocrotaline (MCT) was used to establish PH. BIBR1532 was applied to inhibit the activity of telomerase. The right ventricular systolic pressure (RVSP) and histological analysis were used to detect the development of PH. The protein levels of p-Akt, t-Akt, c-Myc and TERT were determined by western blotting. Pharmacological inhibition of TERT by BIBR1532 effectively suppressed RVSP, RVHI and the WT% in MCT-induced PH rats. Results: Pharmacological inhibition of Akt/c-Myc pathway by LY294002 diminished TERT upregulation, RVSP, RVHI and WT% in MCT-PH rats. Activation of PPAR-γ by pioglitazone inhibited p-Akt and c-Myc expressions and further downregulated TERT, thus to reduced RVSP, RVHI and WT% in MCT-treated PH rats. Conclusions: In conclusion, TERT upregulation contributes to PH development in MCT-treated rats. Activation of PPAR-γ prevents pulmonary arterial remodeling through Akt/c-Myc/TERT axis suppression.

11.
J Ethnopharmacol ; 309: 116297, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-36849102

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xianfang Huoming Yin (XFH) is a traditional Chinese herbal formula, which has the effect of clearing heat and detoxifying toxins, dispersing swellings, activating blood circulation, and relieving pain. It is usually applied to treat various autoimmune diseases, including Rheumatoid arthritis (RA). AIM OF THE STUDY: The migration of T lymphocytes plays an indispensable role in the pathogenesis of RA. Our previous studies demonstrated that modified Xianfang Huoming Yin (XFHM) could modulate the differentiation of T, B, and NK cells, and contribute to the restoration of immunologic balance. It also could downregulate the production of pro-inflammatory cytokines by regulating the activation of NF-κ B and JAK/STAT signaling pathways in the collagen-induced arthritis mouse model. In this study, we want to investigate whether XFHM has therapeutic effects on the inflammatory proliferation of rat fibroblast-like synovial cells (FLSs) by interfering with the migration of T lymphocytes in vitro experiments. MATERIALS AND METHODS: High performance liquid chromatography-electrospray ionization/mass spectrometer system was used to identify the constituents of the XFHM formula. A co-culture system of rat fibroblast-like synovial cells (RSC-364 cells) and peripheral blood lymphocytes stimulated by interleukin-1 beta (IL-1ß) was used as the cell model. IL-1ß inhibitor (IL-1ßRA) was used as a positive control medicine, and two concentrations (100 µg/mL and 250 µg/mL) of freeze-dried XFHM powder were used as intervention measure. The lymphocyte migration levels were analyzed by the Real-time xCELLigence analysis system after 24 h and 48 h of treatment. The percentage of CD3+CD4+ T cells and CD3+CD8+ T cells, and the apoptosis rate of FLSs were detected by flow cytometry. The morphology of RSC-364 cells was observed by hematoxylin-eosin staining. The protein expression of key factors for T cell differentiation and NF-κ B signaling pathway-related proteins in RSC-364 cells were examined by western-blot analysis. The migration-related cytokines levels of P-selectin, VCAM-1, and ICAM-1 in the supernatant were measured by enzyme-linked immunosorbent assay. RESULTS: Twenty-one different components in XFHM were identified. The migration CI index of T cells was significantly decreased in treatment with XFHM. XFHM also could significantly downregulate the levels r of CD3+CD4+T cells and CD3+CD8+T cells that migrated to the FLSs layer. Further study found that XFHM suppresses the production of P-selectin, VCAM-1, and ICAM-1. Meanwhile, it downregulated the protein levels of T-bet, ROR γ t, IKKα/ß, TRAF2, and NF-κ B p50, upregulated the expression of GATA-3 and alleviated synovial cells inflammation proliferation, contributing to the FLSs apoptosis. CONCLUSION: XFHM could attenuate the inflammation of synovium by inhibiting T lymphocyte cell migration, regulating differentiation of T cells through modulating the activation of the NF-κ B signaling pathway.


Subject(s)
Arthritis, Rheumatoid , Synoviocytes , Mice , Rats , Animals , NF-kappa B/metabolism , Intercellular Adhesion Molecule-1/metabolism , P-Selectin/metabolism , CD8-Positive T-Lymphocytes/metabolism , Interleukin-1beta/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Arthritis, Rheumatoid/pathology , Cytokines/metabolism , Inflammation/pathology , Cell Differentiation , Cells, Cultured , Cell Proliferation , Fibroblasts
12.
J Funct Biomater ; 14(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36662078

ABSTRACT

Glucocorticoids inhibit angiogenesis in the femoral head, which fails to nourish the bone tissue and leads to osteonecrosis. Restoring angiogenesis is not only essential for vessel formation, but also crucial for osteogenesis. Poly (L-lactic acid) (PLLA) is commonly used in the bone tissue engineering field. Panax notoginseng saponins (PNS) and osteopractic total flavone (OTF) promote angiogenesis and osteogenesis, respectively. We designed a sequentially releasing PLLA scaffold including PLLA loaded with OTF (inner layer) and PLLA loaded with PNS (outer layer). We assessed the osteogenic effect of angiogenesis in this scaffold by comparing it with the one-layered scaffold (PLLA embedded with OTF and PNS) in vivo. Results from the micro-CT showed that the data of bone mineral density (BMD), bone volume (BV), and percent bone volume (BV/TV) in the PO-PP group were significantly higher than those in the POP group (p < 0.01). Histological analyses show that the PO-PP scaffold exhibits better angiogenic and osteogenic effects compared with the one-layered scaffold. These might result from the different structures between them, where the sequential release of a bi-layer scaffold achieves the osteogenic effect of vascularization by initially releasing PNS in the outer layer. We further explored the possible mechanism by an immunohistochemistry analysis and an immunofluorescence assay. The results showed that the protein expressions of vascular endothelial growth factor (VEGF) and platelet endothelial cell adhesion molecule-1(CD31) in the PO-PP scaffold were significantly higher than those in the POP scaffold (p < 0.01); the protein expressions of osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP) in the PO-PP scaffold were significantly higher than those in the POP scaffold (p < 0.05). Upregulating the expressions of angiogenic and osteogenic proteins might be the possible mechanism.

13.
Ann Allergy Asthma Immunol ; 129(6): 720-730.e8, 2022 12.
Article in English | MEDLINE | ID: mdl-36002091

ABSTRACT

BACKGROUND: High body mass index (BMI) plays a key role in the progression of asthma and asthma related to high BMI resulted in a high burden of disease globally. OBJECTIVE: To explore the geographic and temporal trends in the global burden of asthma associated with high BMI from 1990 to 2019. METHODS: This is a retrospective analysis with data based on the Global Burden of Disease Study 2019 database. Deaths, disability-adjusted life-years (DALYs), age-standardized mortality rate (ASMR), and age-standardized DALY rate (ASDR) were estimated according to sex, age, and sociodemographic index levels. The estimated annual percentage change was used to evaluate the variation trends of ASMR and ASDR from 1990 to 2019. RESULTS: In 2019, the number of global asthma deaths and DALYs related to high BMI increased by 69.69% and 63.91%, respectively, compared with 1990, among which more deaths and DALYs occurred in women. The corresponding ASMR and ASDR exhibited a slightly decreasing tendency globally. South Asia accounted for the highest number of deaths and DALYs, with India ranking first worldwide in 2019. The number of deaths and DALYs were mainly seen in individuals 60 to 79 years old and 55 to 69 years old, respectively, from 1990 to 2019. The heaviest burden existed in the low-middle sociodemographic index region. CONCLUSION: The global asthma burden associated with obesity increased in absolute value but the standardized burden decreased slightly. Large variations existed in the high BMI-related asthma burdens among sexes, ages, and regions.


Subject(s)
Asthma , Global Burden of Disease , Humans , Female , Middle Aged , Aged , Body Mass Index , Quality-Adjusted Life Years , Retrospective Studies , Global Health , Asthma/epidemiology
14.
Int J Chron Obstruct Pulmon Dis ; 17: 1797-1809, 2022.
Article in English | MEDLINE | ID: mdl-35975033

ABSTRACT

Purpose: High levels of red blood cell distribution width (RDW) and hypoalbuminemia are markers of poor prognosis in chronic obstructive pulmonary disease (COPD) patients. However, few studies have shown that the red blood cell distribution width-albumin ratio (RAR) is related to the mortality of COPD. This study aimed to explore the relationship between RAR and hospital mortality in COPD patients admitted to the intensive care unit (ICU). Patients and Methods: Patients were retrospectively incorporated from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database and divided into two groups by a cutoff value of RAR. Propensity score matching (PSM) was performed to adjust for the imbalance of covariates. Logistic regression models and subgroup analyses were carried out to investigate the relationship between RAR and hospital mortality. The receiver operating characteristic (ROC) curve was used to evaluate the predictive performance of RAR and decision curve analysis (DCA) to assess the clinical utility. Results: In total, 1174 patients were finally identified from the MIMIC-IV database. The cutoff value for RAR was 5.315%/g/dL. After PSM at a 1:1 ratio, 638 patients were included in the matched cohort. In the original and matched cohorts, the high RAR group had higher hospital mortality and longer hospital stays. Logistic regression analysis suggested that RAR was an independent risk factor for hospital mortality. The areas under the ROC curve in the original and matched cohorts were 0.706 and 0.611, respectively, which were larger than applying RDW alone (the original cohort: 0.600, the matched cohort: 0.514). The DCA indicated that RAR had a clinical utility. Conclusion: A higher RAR (>5.315%/g/dL) was associated with hospital mortality in COPD patients admitted to ICU. As an easily available peripheral blood marker, RAR can predict hospital mortality in critically ill patients with COPD independently.


Subject(s)
Erythrocyte Indices , Hospital Mortality , Pulmonary Disease, Chronic Obstructive , Albumins , Biomarkers , Humans , Intensive Care Units , Prognosis , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/mortality , ROC Curve , Retrospective Studies
15.
Front Pharmacol ; 13: 964559, 2022.
Article in English | MEDLINE | ID: mdl-35928276

ABSTRACT

Type 2 innate lymphocytes (ILC2s), promoting inflammation resolution, was a potential target for rheumatoid arthritis (RA) treatment. Our previous studies confirmed that R. astragali and R. angelicae sinensis could intervene in immunologic balance of T lymphocytes. C. lonicerae also have anti-inflammatory therapeutic effects. In this study, the possible molecular mechanisms of the combination of these three herbs for the functions of ILC2s and macrophages contributing to the resolution of collagen-induced arthritis (CIA) were studied. Therefore, we used R. astragali, R. angelicae sinensis, and C. lonicerae as treatment. The synovial inflammation and articular cartilage destruction were alleviated after herbal treatment. The percentages of ILC2s and Tregs increased significantly. The differentiation of Th17 cells and the secretion of IL-17 and IFN-γ significantly decreased. In addition, treatment by the combination of these three herbs could increase the level of anti-inflammatory cytokine IL-4 secreted, active the STAT6 signaling pathway, and then contribute to the transformation of M1 macrophages to M2 phenotype. The combination of the three herbs could promote inflammation resolution of synovial tissue by regulating ILC2s immune response network. The synergistic effects of three drugs were superior to the combination of R. astragali and R. angelicae sinensis or C. lonicerae alone.

16.
J Mol Cell Cardiol ; 171: 16-29, 2022 10.
Article in English | MEDLINE | ID: mdl-35810662

ABSTRACT

Glioma-associated oncogene homolog 1 (GLI1), a zinc-finger transcription factor, is upregulated in tumors and promotes cancer cell proliferation and migration. However, whether GLI1 involves in pulmonary artery smooth muscle cells (PASMCs) proliferation and migration and the detailed molecular mechanisms underlying GLI1 in pulmonary arterial hypertension (PAH) are not yet clear. Primary cultured rat PASMCs and monocrotaline (MCT)-induced PAH rats model were applied to address these issues in the present study. We found that the expression of GLI1 was significantly increased in endothelin-1 (ET-1) treated PASMCs, accompanied with the activation of microRNA (miR)-27b-3p/F-box and WD repeat domain containing 7 (FBXW7)/kruppel-like factor 5 (KLF5)/GLI1 pathway through endothelin-1 receptor type A (ETAR). Elevated miR-27b-3p suppressed FBXW7 expression, which led to KLF5 accumulation by decreasing its ubiquitinated degradation, KLF5 further induced GLI1 upregulation leading to PASMCs proliferation and migration. In addition, in MCT-induced PAH rats, targeting ETAR/miR-27b-3p/FBXW7/KLF5/GLI1 pathway effectively prevented the pulmonary vascular remodeling and the development of PAH in rats. Our study indicates that interfering ETAR/miR-27b-3p/FBXW7/KLF5/GLI1 signaling axis might have a potential value in the prevention and treatment of PAH.


Subject(s)
MicroRNAs , Pulmonary Arterial Hypertension , Zinc Finger Protein GLI1 , Animals , Cell Proliferation , Endothelin-1/metabolism , F-Box-WD Repeat-Containing Protein 7/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Monocrotaline , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Artery/pathology , Rats , Receptor, Endothelin A/metabolism , Zinc Finger Protein GLI1/metabolism
17.
J Asian Nat Prod Res ; 24(11): 1086-1092, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35852111

ABSTRACT

A new polyketide derivative containing a 3-hydroxydecanoic acid ester moiety, penicipurate A (1), was purified from the solid cultures of the fungus Penicillium purpurogenum, a fungal strain endophytic in the leaves of Edgeworthia chrysantha. The structure of 1 was established by spectroscopic methods, including UV, IR, HRESIMS, 1D, and 2D NMR and 13C NMR chemical shifts calculations coupled with DP4+ analysis, as well as the chemical degradation method. Compound 1 showed moderate inhibitory activity against pancreatic lipase (PL) with an IC50 value of 9.61 ± 1.42 µM.


Subject(s)
Penicillium , Polyketides , Talaromyces , Polyketides/pharmacology , Polyketides/chemistry , Penicillium/chemistry , Molecular Structure
18.
Can Respir J ; 2022: 5618376, 2022.
Article in English | MEDLINE | ID: mdl-35721788

ABSTRACT

Background: Chronic obstructive pulmonary disease (COPD) is a common chronic disease. Progression is further exacerbated by the coexistence of cardiovascular disease (CVD). We aim to construct a diagnostic nomogram for predicting the risk of coexisting CVD and a prognostic nomogram for predicting long-term survival in COPD. Methods: The 540 eligible participants selected from the NHANES 2005-2010 were included in this study. Logistic regression analysis was used to construct a diagnostic nomogram for the diagnosis of coexisting CVD in COPD. Cox regression analyses were used to construct a prognostic nomogram for COPD. A risk stratification system was developed based on the total score generated from the prognostic nomogram. We used C-index and ROC curves to evaluate the discriminant ability of the newly built nomograms. The models were also validated utilizing calibration curves. Survival curves were made using the Kaplan-Meier method and compared by the Log-rank test. Results: Logistic regression analysis showed that gender, age, neutrophil, RDW, LDH, and HbA1c were independent predictors of coexisting CVD and were included in the diagnostic model. Cox regression analysis indicated that CVD, gender, age, BMI, RDW, albumin, LDH, creatinine, and NLR were independent predictors of COPD prognosis and were incorporated into the prognostic model. The C-index and ROC curves revealed the good discrimination abilities of the models. And the calibration curves implied that the predicted values by the nomograms were in good agreement with the actual observed values. In addition, we found that coexisting with CVD had a worse prognosis compared to those without CVD, and the prognosis of the low-risk group was better than that of the high-risk group in COPD. Conclusions: The nomograms we developed can help clinicians and patients to identify COPD coexisting CVD early and predict the 5-year and 10-year survival rates of COPD patients, which has some clinical practical values.


Subject(s)
Cardiovascular Diseases , Pulmonary Disease, Chronic Obstructive , Cardiovascular Diseases/complications , Cardiovascular Diseases/epidemiology , Humans , Neoplasm Staging , Nomograms , Nutrition Surveys , Prognosis , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , ROC Curve , Risk Factors
19.
Front Oncol ; 12: 880144, 2022.
Article in English | MEDLINE | ID: mdl-35720002

ABSTRACT

Objectives: Interstitial pneumonitis (IP), a potentially fatal complication of non-Hodgkin Lymphoma (NHL) patients received CHOP (cyclophosphamide and doxorubicin and vincristine and prednisone)-like chemotherapy, negatively affected patients' clinical outcome and quality of life. We aimed to explore patient-related, disease-related and drug-related risk factors associated with IP and gain a better understanding of the incidence in NHL patients. Methods: Databases, including PubMed, Ovid, China National Knowledge Internet (CNKI), and Wanfang Database from inception to January 20, 2022, were searched to identify studies evaluating the risk factors and incidence of IP. The included studies were assessed by Newcastle-Ottawa Quality Scale and above 7 points was considered high quality. The statistical analysis of risk factors was assessed by RevMan software (version 5.3) and incidence of IP was calculated by R software (version 4.1.2). Fixed-or random-effects models were applied to estimated the relative risks (RRs) and 95% confidence interval (Cl). Results: A total of 12 studies comprised of 3423 NHL patients were included in the analysis. Among the 3 available patient-related risk factors, 6 disease-related risk factors and 3 drug-related risk factors, it was found that only drug-related risk factors were significantly associated with IP development: pegylated liposomes doxorubicin (PLD) replacement (RR = 3.25, 95% CI = 1.69-6.27, I2 = 64%), rituximab (RTX) addition (RR = 4.24, 95% CI = 2.58-6.96, I2 = 0) and granulocyte colony stimulating factor (G-CSF) administration (RR = 5.80, 95% CI = 3.05-11.05, I2 = 0). The pooled incidence of CHOP, R-CHOP, and R-CDOP regimen was 1.0% (95% CI 0.00-0.01, I2 = 8%), 7.0% (95% CI 0.05-0.09, I2 = 64%) and 22.0% (95% CI 0.13-0.32, I2 = 87%) respectively. Conclusion: PLD replacement, RTX addition and G-CSF administration were significant risk factors of IP for NHL patients received the CHOP-like chemotherapy. Clinicians should focus on these patients to detect and treat the IP development timely, which might bring benefit in patients' survival. Systematic Review Registration: PROSPERO, identifier CRD42022309884.

20.
Biomed Pharmacother ; 152: 113233, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35689861

ABSTRACT

Vascular remodeling is a significant feature of pulmonary artery hypertension (PAH), and is characterized by abnormal proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs). Telomerase reverse transcriptase (TERT), as a determining factor for controlling telomerase activity, has been proven to be associated with cell proliferation. This study aims to explore whether TERT mediates the proliferation and migration of PASMCs and the underlying molecular mechanism. Primary PASMCs from Sprague-Dawley (SD) rats were used in this experiment. Cell proliferation and migration were evaluated by Cell Counting Kit-8, EdU incorporation assay and transwell assay, respectively. Telomerase activity was assessed with a rat TE ELISA kit. Small interfering RNA (siRNA) transfection was conducted to silence c-MYC expression. The protein levels of p-Akt, c-MYC, PPARγ and TERT were determined through western blotting. Our work demonstrates that PDGF upregulated TERT expression and telomerase activation by activating Akt and upregulating of c-MYC in PASMCs. Inhibition of Akt with LY294002, knockdown of c-MYC by siRNA or suppression of telomerase activity with BIBR1532 repressed PDGF-induced PASMC proliferation and migration. Furthermore, activation of peroxisome proliferator-activated receptor γ (PPARγ) with pioglitazone suppressed PDGF-induced TERT expression and telomerase activation, leading to inhibition of PASMC proliferation and migration.


Subject(s)
Pulmonary Artery , Telomerase , Animals , Cell Proliferation , Cells, Cultured , Myocytes, Smooth Muscle/metabolism , PPAR gamma/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Artery/metabolism , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Telomerase/genetics , Telomerase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...